Heterogeneity and Shocks

Christine Braun

Heterogeneity so far

- Random Search:
 - Wage posting
 - Firm heterogeneity: no wage distribution, Diamond Paradox
 - Worker heterogeneity: Albrecht & Axell (1984), partial equilibrium model, get wage distribution
- Competitive Search:
 - Firm heterogeneity: Moen (1997), get wage distribution

Today

- Look at random search with bargaining
 - Ex ante firm heterogeneity and ex post match productivity
 - When is the model tractable with shocks?
- Two equilibrium solutions for stochastic search models
 - Rank preserving equilibrium: random search models with shocks
 - Block recursive equilibrium: directed search models with shocks

Random Search: ex ante firm heterogeneity

Environment

- Random search, i.e. one matching function no information prior to search
- Standard DMP setup with wage bargaining
- Exists a distribution of firm productivities $y \sim F(y)$
- Problem: Free entry can not hold for each productivity simultaneously

Random Search: ex ante firm heterogeneity

• Workers value functions

$$rU = b + p(\theta) \left[\int_{y} E(y) - U \, dF(y) \right]$$
$$rE(y) = w(y) - \delta[U - E(y)]$$

• Firm value functions

$$rV(y) = -\kappa + q(\theta)[J(y) - V(y)]$$

$$rJ(y) = y - w(y) + \delta[V(y) - J(y)]$$

Bargaining Solution

$$w(y) = \gamma y + (1 - \gamma) r U$$

Random Search: ex ante firm heterogeneity

• Free entry:
$$V(y) = 0 \quad \forall y$$

$$\frac{\kappa}{q(\theta)} = \frac{y - w(y)}{r + \delta} \quad \forall y$$

• y - w(y) must be constant w.r.t. y, but

$$y - w(y) = (1 - \gamma)(y - rU)$$

- Free entry can not hold for each productivity simultaneously, need another equilibrium condition.
 - ex. like in Moen (1997) assume firms pay entry fee χ, then observe productivity ⇒ E_y[V(y)] = χ

Random Search: ex post match heterogeneity

• An alternative is to assume ex post match heterogeneity

• Firms productivity y is fixed

 After matching firm and worker pull a match specific productivity z ~ F(z), if match ends productivity is lost.

• Free entry can now solve the equilibrium

Random Search: ex post match heterogeneity

• Workers value functions

$$rU = b + p(\theta) \left[\int_{z_R} E(z) - U \ dF(z) \right]$$

$$rE(z) = w(z) - \delta[U - E(z)]$$

• Firm value functions

$$rV = -\kappa + q(\theta) \left[\int_{z_R} J(z) - V \ dF(z)
ight]$$

$$rJ(z) = (y+z) - w(z) + \delta[V - J(z)]$$

• Bargaining Solution

$$w(z) = \gamma(y+z) + (1-\gamma)rU$$

Random Search: ex post match heterogeneity

 Reservation match productivity: workers accept job as long as w(z) ≥ rU, with w(z_R) = rU

$$w(z_R) = \gamma(y + z_R) + (1 - \gamma)rU \Rightarrow z_R = rU - y$$

Free entry: rhs is now constant

$$\frac{\kappa}{q(\theta)} = \int_{z_R} \frac{(y+x) - w(z)}{r+\delta} \ dF(z)$$

 Note: the free entry condition now depends on the distribution of productivities. At this point it is tractable b/c *F* is exogenous.

- Consider a model with on-the-job search (OJS) (Burdett-Mortensen)
 - Here we had an equilibrium wage offer distribution F(w) and an equilibrium wage distribution G(w)
 - G(w) was the probability a worker was employed at wage ≤ w
- The evolution of G(w), with endogenous contact rate $p(\theta)$ $\frac{\partial G(w,t)}{\partial t} = p(\theta)[F(w) - F(R)]u - [\delta + p(\theta)(1 - F(w))]G(w)(1 - u)$

all of these things depend on θ

• Free entry condition

$$\frac{\kappa}{q(\theta)} = \text{ expected profits}$$
$$= [\text{acceptance probability}] \times [\text{value added from match}]$$

- Without OJS: the acceptance probability was 1 in equilibrium
 - firms only bump into unemployed workers
 - unemployed workers accept wage above reservation wage
 - no firms offers below reservation wage in equilibrium

• Free entry condition

```
\frac{\kappa}{q(\theta)} = \text{ expected profits}= [\text{acceptance probability}] \times [\text{value added from match}]
```

- With OJS: the acceptance probability depends on who they bump into
 - unemployed workers always accept
 - employed workers only accept if offer is better than current offer
 - who they bump into depends on u and G(w), which both depend on θ

- With OJS in steady state, i.e. no shocks
 - $\partial G(w, t) / \partial t = 0$, still somewhat tractable
 - have an equation for G(w) in steady state
 - have an equation for *u* in steady state
- With OJS with shocks
 - $\partial G(w,t)/\partial t \neq 0$ and depends on the evolution of $\theta(t)$, u(t), and R(t)
 - to solve free entry we need entire evolution of G(w, t) and u(t)

- Solve a stochastic OJS model a la Burdett-Mortensen.
 - today with exogenous contact rate
 - see paper for endogenous contact rate
 - prove the existence, uniqueness, and efficiency of a Rank Preserving Equilibrium (RPE)
 - RPE is the key that makes these problems manageable

- Environment of exogenous contact rate model
 - time is discrete, everyone discounts at β
 - there exists an underlying stochastic process, ω_t which evolves according to a first-order Markov process
 - firms heterogeneity in productivity p ~ Γ(p), final output is ω_tp
 - exogenous separations $\delta_t = \delta(\omega_t)$
 - exogenous job finding prob $\lambda_t = \lambda(\omega_t)$ while unemployed
 - exogenous job finding prob $s\lambda_t$ while employed
 - unemployed receive $b_t = b(\omega_t)$

• Timing

- 1. new state is realized ω_t
- 2. employed can quit to unemployment
- 3. jobs are destroyed exogenously δ_t
- 4. remaining employed receive outside offer with probability $s\lambda_t$ and decided to accept or reject
- 5. previously unemployed workers receive job offer with probability λ_t and decide to accept or reject
- 6. production takes place and payments are made, wage and b_t

- Firms Strategies
 - Firms choose and commit to employment contacts, i.e. a schedule of state contingent wages
 - Maximizes discounted profits s.t. other firms contracts
 - All workers in a firm get the same wage
- The employment contract
 - V_t(p) the value a worker gets at time t working for a firm with productivity p
 - the wage function that implements V maximizes t = 0 discounted firm profits

- Equilibrium Objects (*t* denotes current value given aggregate state)
 - a value of unemployment in each period U_t
 - an employment value offer distribution $F_t(W)$
 - a distribution of earned employment values $G_t(W)$
 - unemployment rate u_t

- Worker value functions
 - Unemployment

$$U_t = b_t + \beta E_t \left[(1 - \lambda_t) U_{t+1} + \lambda_t \int max\{x, U_{t+1}\} dF_{t+1}(x) \right]$$

Employment

$$W_{t} = w_{t} + \beta E_{t} \bigg[\delta_{t+1} U_{t+1} + (1 - \delta_{t+1}) (1 - s\lambda_{t+1}) W_{t+1} + (1 - \delta_{t+1}) s\lambda_{t+1} \int_{W_{t+1}} x - W_{t+1} dF(x) \bigg]$$

• Labor supply to firm of type p

$$\begin{split} L_{t+1}(p) &= L_t(p)(1-\delta_{t+1})[1-s\lambda_{t+1}[1-F_{t+1}(V_{t+1}(p))]] \\ &+ \lambda_{t+1}[1-N_t(\bar{p})] \\ &+ s\lambda_{t+1}(1-\delta_{t+1})N_t(\bar{p})G_{t+1}(V_{t+1}(p)) \end{split}$$

Total employment at firms less or equal to p

$$N_t(p) = \int_{\underline{p}}^p L_t(p) \ d\Gamma(p)$$

Unemployment

$$u_t = 1 - N_t(\bar{p})$$

- Firms problem: to maximize expected discounted profits Π_0
- Let \bar{V} be the value the firm promised in period t-1 to deliver in period t, then we can write the problem recursively s.t. offering at least \bar{V}

$$\Pi(\bar{V}) = \max_{w_t, W_{t+1} \ge U_{t+1}} (\omega_t p - w_t) L_t + \beta E_t [\Pi_{t+1}(W_{t+1})]$$

s.t. $\bar{V} = w_t + \beta E_t \bigg[\delta_{t+1} U_{t+1} + (1 - \delta_{t+1})(1 - s\lambda_{t+1}) W_{t+1} + (1 - \delta_{t+1})s\lambda_{t+1} \int_{W_{t+1}} x - W_{t+1} dF(x) \bigg]$

- This problem can be rewritten (see paper) to show that the solution does not depend on the current promised value \bar{V}
- Intuition
 - at time t firm offers state contingent W_{t+1} to maximize profits Π_{t+t}
 - then to deliver the W_t it promised last period it adjusts w_t
 - because it is offering W_t in period t which was chosen optimally in period t − 1, profits in period t are maximized.

• To solve all this we still need the offer distribution $F_t(W)$ and the earned value distribution $G_t(W)$, both of these show up in L_t and U_t

$$egin{aligned} F_t(W) &= \int_{\underline{p}}^p \mathbb{I}\{V_t(p) \leq W\} \ d\Gamma(p) \ & G_t(W) &= rac{1}{N_t(p)} \int_{\underline{p}}^{ar{p}} \mathbb{I}\{V_t(p) \leq W\} \ dN_t(p) \end{aligned}$$

• This is hard to solve, F and G depend on V each period, but to solve for V from firm's problem we need to know F and G

- Rank Perserving Equilibrium: a Markov equilibrium V where, on the equilibrium path, a more productive firm always offers its workers a higher continuation value $V_{t+1}(p) = V(p, L_t(p), \omega_{t+1}, N_t)$ is increasing in p, including the effect of p on current firm size $L_t(p)$.
- In a RPE we have

$$F_t(V_t(p)) \equiv \Gamma(p)$$
 $G_t(V_t(p)) = rac{N_{t-1}(p)}{N_{t-1}(ar{p})}$

RPE Properties

- labor allocations are constrained efficient, i.e. all movements from U to E are efficient, all E to E movements are up the job ladder
- Uniqueness: there exists at most one RPE
- Existence: and more productive firms are initially weakly larger (L₀(p) is non-decreasing)
- See paper for a condition on the optimal contract.
- See paper for endogenous contact rates

Shocks in a directed search model

- Now let's look at the same type of model in a directed search framework
 - heterogeneity in production
 - shocks to aggregate productivity
 - on the job search
- The equilibrium will be block recursive
 - block 1: decisions rules and tightness can be solved without knowing the distribution of workers across unemployment and employment productivities
 - block 2: the distribution of workers is solved for using the decision rules

- Environment
 - Time is discrete
 - Everyone discounts at β
 - Workers have a period utility function $\nu(\cdot)$, weakly concave
 - Aggregate productivity is $\mathbf{y} \in \{y_1, ..., y_{N_y}\}$

• drawn from $\Phi(\hat{y}|y)$

- Idiosyncratic match productivity $z \in \{z_1, ..., z_{N_z}\}$
 - drawn from $\Phi(\hat{z}|z)$
- Final production y + z

Environment cont.

- There exist submarkets which are indexed by the lifetime utility **x** that the worker receives
- Each submarket has a matching technology as a function of tightness θ
 - job finding probability $p(\theta)$
 - job filling probability $q(\theta)$
- δ is the separation probability
- Aggregate state: $\psi(y, u, g) \in \Psi$
 - y draw of the aggregate productivity
 - $u \in [0,1]$ the measure of unemployed workers
 - g(V, z) measure of workers employed at jobs that gives them lifetime utility ≤ V and have an idiosyncratic component of productivity ≤ z

- Workers
 - λ_u probability they can search while unemployed
 - λ_e probability they can search while employed
 - get *b* while unemployed
- Frims
 - post vacancies in a submarket at cost k
 - choose an employment contract that give the worker his promised utility and maximizes their discounted profits
 - dynamic wage
 - fixed wage contract
 - offers work a two point lottery over the employment contract that is drawn at the begining of the match

• Timing

- 1. a new y is drawn and a new z is drawn for all employed
- 2. Separation
 - exogenous separation
 - employed can choose to quit
- 3. Search
 - previously unemployed workers w/ prob λ_u
 - still employed w/ prob λ_e
 - newly unemployed do not
- 4. Matching
- 5. Production and payments

- Employed worker: employed at a job with value V
 - search value function

$$R(V,\Psi) = \max_{x \in X} p(\theta(x,\Psi))(x-V)$$

decision rule

$$m(V, \Psi)$$

- Unemployed worker
 - value function

$$U(\Psi) = b + \beta E_{\hat{\Psi}}[U(\hat{\Psi}) + \lambda_u \max\{0, R(U(\hat{\Psi}), \hat{\Psi})\}]$$

decision rule

 $m(U, \Psi)$

- Fixed wage employment contract: firms commit to a constant wage throughout employment
 - offer the worker a two point lottery over employment contract
 - wage can depend on the outcome of lottery but fixed after
 - lottery maximizes firm's discounted profits while guaranteeing the worker the value posted in the submarket

Menzio & Shi (2011): Fixed wage contract

H(*w*, Ψ): workers discounted lifetime utility at wage *w* and state of the world Ψ

$$H(w, \Psi) = w + \beta E_{\hat{\Psi}} \{ d(\hat{\Psi}) U(\hat{\Psi}) - (1 - d(\hat{\Psi})) [H(w, \hat{\Psi}) + \lambda_e \max\{0, R(H(w, \hat{\Psi}), \hat{\Psi})\}] \}$$

$$egin{aligned} d(\hat{\Psi}) &= egin{cases} \delta & U(\hat{\Psi}) \leq H(w,\hat{\Psi}) + \lambda_e \max\{0, R(H(w,\hat{\Psi}),\hat{\Psi})\} \ 1 & ext{otherwise} \end{aligned}$$

• Let $h(V, \Psi)$ be the solution to the wage, w, such that $H(w, \Psi) = V$

Menzio & Shi (2011): Fixed wage contract

 K(w, Ψ, z): firms lifetime discounted profits of hiring a worker at wage w in the state of the world Ψ and match specific draw z

$$\begin{split} \mathcal{K}(w,\Psi,z) &= y + z - w \\ &+ \beta E_{\hat{\Psi},\hat{z}}\{(1-d(\hat{\Psi}))[1-\lambda_e \tilde{p}(H(w,\hat{\Psi}),\hat{\Psi})]\mathcal{K}(w,\hat{\Psi},\hat{z})\} \end{split}$$

- $d(\hat{\Psi})$ as before
- $\tilde{p}(\cdot)$ is job finding prob. in the optimal submarket

Menzio & Shi (2011): Fixed wage contract

 J(V, Ψ, z₀): firms lifetime discounted profits matching in submarket x = V in the state of the world Ψ and match specific draw z₀

$$J(V, \Psi, z_0) = \max_{\pi_i, \tilde{V}_i} \sum_{i=1}^2 \pi_i K(h(\tilde{V}_i, \Psi), \Psi, z_0)$$

s.t. $\pi_i \in [0, 1], \ \tilde{V}_i \in X, \text{ for } i = 1, 2$
 $\pi_1 + \pi_2 = 1, \ \pi_1 \tilde{V}_1 + \pi_2 \tilde{V}_2 = V$

• Let $c(V, \Psi, z_0)$ be the optimal policy function

• Free entry: firms post vacancies in submarkets until expected profit equals expected cost

$$k = q(\theta(x, \Psi))J(x, \Psi, z_0) \ \forall x$$

- Recursive Equilibrium: a market tightness function θ: X × Ψ → ℝ⁺, a search value function R : X × Ψ → ℝ, a search policy function: m: X × Ψ → X, an unemployment value function U : Ψ → X, a firm's value function J: X × Ψ × z → ℝ, a contract policy function c: X × Ψ × Z → C and a transition probability function for the aggregate state of the economy Φ_{ψ̂} : Ψ × Ψ → [0, 1]. These functions satisfy the following requirements:
 - θ satisfies free entry condition
 - *R* maximizes worker's search problem, with optimal policy *m*
 - U satisfies unemployed workers problem
 - J maximizes firm profits, with optimal policy c
 - $\Phi_{\hat{\Psi}}$ is derived from *c*, and *m*

- Block Recursive Equilibrium: a recursive equilibrium such that the functions {θ, R, m, U, J, c} depend on the aggregate state of the economy, Ψ, only through the aggregate component of productivity, y, and not through the distribution of workers across employment states, (u, g).
 - for each y can solve for $\{\theta, R, m, U, J, c\}$
 - the using m, c and Φ_y, Φ_z you can solve for the transition probabilities, Φ_Ψ, of the aggregate state Ψ = {y, u, g}

Existence and Properties

- Menzio & Shi (2011): the existence of a BRE does not depend on the type of contract, fixed vs dynamic
 - does not depend on completeness of contracts
- Shi (2009): the existence of a BRE does not depend on risk neutrality of workers
- Menzio & Shi (2010): prove existence of BRE for ex ante worker heterogeneity
- Menzio & Shi (2014): efficiency and uniqueness