The Job Arrival Rate and DMP

Christine Braun

From last time

$$
\begin{gathered}
r U=b+\alpha \int_{w_{R}}^{\infty} E(w)-U d F(w) \\
r E(w)=w+\delta[U-E(w)]
\end{gathered}
$$

- We now have some ways of thinking about $F(w)$
- What about α ?
- typical assumption: poisson arrival rate
- what does it represent?
- what does this arrival rate depend on?

The arrival rate of jobs

- At the beginning we assumed you get a job offer every period
- with an exogenous wage distributions we have unemployment only because you received a job offer less than your reservation wage
- Now let's assume there is an arrival rate of jobs
- frictional unemployment: unemployed because you did not get an offer
- why did you not get an offer: coordination frictions

Coordination Frictions

- Trade in the labor market is decentralized
- firms make decisions about how many jobs to create and wages to offer
- workers make decisions about where to apply to job, how many jobs to apply to, ect ...
- More than 1 worker applies to the same job: unemployment
- No worker applies to a certain job: unfilled vacancy
- Burdett, Shi, Wright (2001)

Burdett, Shi, Wright

- Environment
- Two workers (1 and 2) homogeneous and looking for work, each apply to only one job
- Two firms (A and B) homogeneous and each have one job to fill
- If the job is filled output $=y$, and wage $=w$
- One shot game
- Payoffs
- If a match occurs

$$
u=w \quad \pi=y-w
$$

- If no match occurs

$$
u=0 \quad \pi=0
$$

Burdett, Shi, Wright

- Firms choose a wage to offer
- w_{A} and w_{B}
- Workers choose which job to apply to
- worker i applies to firm A with prob $=\theta_{i}$
- worker i applies to firm B with prob $=1-\theta_{i}$
- Two stage game
- Stage 1: Firms post wages
- Stage 2: Workers choose probabilities

Stage 2

- Worker takes wages as given.
- Worker 1's utility from applying to firm A and firm B

$$
\begin{aligned}
& U_{1 A}=\frac{1}{2} \theta_{2} w_{A}+\left(1-\theta_{2}\right) w_{A} \\
& U_{1 B}=\theta_{2} w_{B}+\frac{1}{2}\left(1-\theta_{2}\right) w_{B}
\end{aligned}
$$

- Worker 2's utilities are symmetric
- Worker 1 is indifferent between applying to both jobs $\left(U_{1 A}=U_{1 B}\right)$ if

$$
\theta\left(w_{A}, w_{B}\right)=\frac{2 w_{A}-w_{B}}{w_{A}+w_{B}}
$$

Stage 2

- Worker 1's strategy

$$
\theta_{1} \begin{cases}0 & \text { if } \theta_{2}>\theta\left(w_{A}, w_{B}\right) \\ 1 & \text { if } \theta_{2}<\theta\left(w_{A}, w_{B}\right) \\ {[0,1]} & \text { if } \theta_{2}=\theta\left(w_{A}, w_{B}\right)\end{cases}
$$

- Worker 2's strategy is symmetric
- When does $\theta\left(w_{A}, w_{B}\right)=1$?

$$
w_{A}>2 w_{B}
$$

- When does $\theta\left(w_{A}, w_{B}\right)=0$?

$$
w_{A}<\frac{1}{2} w_{B}
$$

- When is $0<\theta\left(w_{A}, w_{B}\right)<1$?

$$
\frac{1}{2} w_{B}<w_{A}<2 w_{B}
$$

Stage 2

- If $w_{A}>2 w_{B}$, both workers are better off going to firm A

$$
\theta_{1}=\theta_{2}=1
$$

- If $w_{A}<\frac{1}{2} w_{B}$, both workers are better off going to firm B

$$
\theta_{1}=\theta_{2}=0
$$

- If $\frac{1}{2} w_{B}<w_{A}<2 w_{B}$ there are three equilibria
- Pure strategy: $\left(\theta_{1}, \theta_{2}\right)$ is $(0,1)$ or $(1,0)$
- Perfect coordination
- Mixed strategy: $\theta_{1}=\theta_{2}=\theta\left(w_{A}, w_{B}\right)$
- Coordination frictions

Stage 2

Stage 1

- Taking the workers strategies as given solve for firm profits
- If $w_{A}>\frac{1}{2} w_{B}$ then firm A gets both workers

$$
\pi_{A}=y-w_{A}, \pi_{B}=0
$$

- If $w_{A}<2 w_{B}$ then firm B gets both workers

$$
\pi_{A}=0, \pi_{B}=y-w_{B}
$$

- If $\frac{1}{2} w_{B}<w_{A}<2 w_{B}$, in both pure strategy equilibria

$$
\pi_{A}=y-w_{A}, \pi_{B}=y-w_{B}
$$

Stage 1

- If it posts $\frac{1}{2} w_{B}<w_{A}<2 w_{B}$, and workers play a mixed strategy, Firm A's profits are:

$$
\begin{aligned}
\pi_{A} & =\left(y-w_{A}\right) \theta_{1}\left(1-\theta_{2}\right)+\left(y-w_{A}\right)\left(1-\theta_{1}\right) \theta_{2} \\
& +\left(y-w_{A}\right) \theta_{1} \theta_{2}+0\left(1-\theta_{1}\right)\left(1-\theta_{2}\right) \\
\pi_{A} & =\left(y-w_{A}\right) \frac{3 w_{B}\left(2 w_{A}-w_{B}\right)}{\left(w_{A}+w_{B}\right)^{2}}
\end{aligned}
$$

- Firm A 's profit maxing best response:

$$
w_{A}^{*}\left(w_{B}\right)=\frac{w_{B}\left(4 y+w_{B}\right)}{5 w_{B}+2 y}
$$

- Firm B 's profits and best response are symmetric

Mixed Strategy Equilibrium

- Solving for the equilibrium
$\theta_{1}=\frac{1}{2}$
$\theta_{2}=\frac{1}{2}$
$w_{A}=\frac{y}{2}$
$\pi_{A}=\frac{3 y}{8}$
$w_{B}=\frac{y}{2}$
$\pi_{B}=\frac{3 y}{8}$

Mixed Strategy Equilibrium

- The expected number of matches

$$
M=1 \theta_{1} \theta_{2}+1\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)+2\left(1-\theta_{1}\right)\left(\theta_{2}\right)+2 \theta_{1}\left(1-\theta_{2}\right)
$$

- Expected probability of receiving job offer (assuming that the firm randomly chooses between the two workers if both apply to the same job)

$$
\alpha=\frac{M}{2}=0.75
$$

General Solution

- Burdett, Shi, Wright show that for m firms and n workers the matching functions is:

$$
M(m, n)=m\left[1-\left(1-\frac{1}{m}\right)^{n}\right]
$$

- Arrival rate of job offers $M(m, n) / n$
- Fix $n / m=b$ then as m increases the arrival rate decreases \Rightarrow matching function is decreasing returns to scale. Bigger markets have larger frictions
- As $m \rightarrow \infty$ matching function converges to constant returns to scale

The Matching Function

- Typically in random search models we do not explicitly model the application strategies of workers.
- Reduced form approach to matching friction: assume a matching function exists
- Matching function:
- depends on the number of unemployed U and vacancies V
- depends on some aggregate efficiency parameter A
- exhibits constant returns to scale

$$
M(U, V)=A U^{\beta} V^{1-\beta}
$$

- Nice discussion: Petrongolo \& Pissarides (2001)

The Job Finding and Filling Rate

- Given the matching function

$$
M(U, V)=A U^{\beta} V^{1-\beta}
$$

define labor market tightness $\theta=V / U$

- The job finding rate

$$
p(\theta)=\frac{M(U, V)}{U}=A \theta^{1-\beta}
$$

- The job filling rate

$$
q(\theta)=\frac{M(U, V)}{V}=A \theta^{-\beta}
$$

Diamond Mortensen Pissarides (DMP)

- Environment
- continuous time
- everyone discounts at rate r
- homogeneous workers searching for jobs
- homogeneous firms post vacancies
- job finding and filling rates determined by matching function
- wages determined by Nash Bargaining

Diamond Mortensen Pissarides (DMP)

- A steady state
- a measure of unemployed workers u
- a measure of vacancies v
- a wage w
- We have three unknowns so we will have three steady state equations to solve
(1) The Beveridge Curve: a relationship between the unemployment rate and vacancy rate
(2) Job Creation: firms continue to post vacancies until the value of having a vacant job is zero
(3) The Nash solution: gives a solution to the wage as a function of labor market tightness
- (2) and (3) will determine the steady state values of θ^{*} and w^{*}. Given $\theta^{*},(1)$ and (3) will determine the steady state values of u^{*} and v^{*}

Workers

- When unemployed, workers receive unemployment benefits b and search for jobs
- The value of unemployment is

$$
r U=b+p(\theta)[E-U]
$$

- When employed workers receive wage w and lose their jobs at an exogenous rate δ
- The value of employment is

$$
r E=w+\delta[U-E]
$$

Workers

- Solving the value of unemployment and value of employment simultaneously gives:

$$
\begin{aligned}
& E=\frac{w(r+p(\theta))+\delta b}{r(r+p(\theta)+\delta)} \\
& U=\frac{(r+\delta) b+p(\theta) w}{r(r+p(\theta)+\delta)}
\end{aligned}
$$

Firms

- If a firm has a vacant job it pays flow cost κ to post the vacancy
- The value of having a vacancy is

$$
r V=-\kappa+q(\theta)[J-V]
$$

- If a firm has a filled job it produces output y and pays wage w, the job is exogenously destroyed at rate δ
- The value of a filled job is

$$
r J=y-w+\delta[V-J]
$$

Beveridge Curve

- In steady state the inflow and outflow of unemployment are equal
- Inflow: $\delta(1-u)$
- Outflow: $p(\theta) u$
- Solving for u gives the unemployment rate

$$
u=\frac{\delta}{\delta+p(\theta)}
$$

- Since $\theta=v / u$, where v is the vacancy rate, this gives us a relationship between u and v known as the Beveridge Curve.

Job Creation Curve

- The free entry condition means that firms will continue to post vacancies until the value of a vacancy is driven to zero. This implies:

$$
\begin{gathered}
V=0 \\
J=\frac{y-w}{r+\delta} \quad \& \quad J=\frac{\kappa}{q(\theta)}
\end{gathered}
$$

- Equating the two values for a filled job gives us the second equation we need

$$
y-w-\frac{\kappa(r+\delta)}{q(\theta)}=0
$$

Wages

- Wages are determined by bargaining between the firm and the worker to avoid the critiques raised by Rothchild and Diamond
- The bargaining problem
- Total value of a match

$$
\Omega=E(w)+J(w)
$$

- Disagreement values: (U, V)
- Bargaining power: γ
- Generalized Nash Bargaining problem

$$
w=\underset{w}{\operatorname{argmax}}[E(w)-U]^{\gamma}[J(w)]^{1-\gamma}
$$

Wages

- Plugging in the value functions and solving for the max gives us the last equation we need to find the steady state

$$
w=\gamma y+(1-\gamma) r U
$$

- Use FOC, the value function for $r U$, and $J=\kappa / q(\theta)$ to get:

$$
w=(1-\gamma) b+\gamma(y+\kappa \theta)
$$

$$
V=0 \Rightarrow J=\frac{y-w}{r+\delta} \quad \& J=\frac{\kappa}{q(\theta)}
$$

$$
w=(1-\gamma) b+\gamma(y+\kappa \theta)
$$

$$
u=\frac{\delta}{\delta+p(v / u)}
$$

$$
v / u=\theta^{*}
$$

Comparative Statics

- What will happen if we decrease the worker's bargaining power (γ) ?
- Job Creation?

$$
y-w-\frac{\kappa(r+\delta)}{q(\theta)}=0
$$

- Wages?

$$
w=(1-\gamma) b+\gamma(y+\kappa \theta)
$$

- Beveridge Curve?

$$
u=\frac{\delta}{\delta+p(\theta)}
$$

- Steady state?

Comparative Statics

- What will happen if we decrease the worker's bargaining power (γ) ?
- Job Creation?

$$
y-w-\frac{\kappa(r+\delta)}{q(\theta)}=0
$$

- Wages?

$$
w=(1-\gamma) b+\gamma(y+\kappa \theta)
$$

- Beveridge Curve?

$$
u=\frac{\delta}{\delta+p(\theta)}
$$

- Steady state? $w^{*} \downarrow, \theta^{*} \uparrow, v^{*} \uparrow, u^{*} \downarrow$

Efficiency

- Is zero unemployment efficient? No
- higher unemployment incentivizes firms to post vacancies
- but high unemployment is costly, less production
- Is a high vacancy rate efficient?
- vacancy creation is costly
- but lots of vacancies reduces unemployment
- So what is the efficient level of θ ?

Efficiency

- Congestion externality
- one more hiring firm makes unemployed workers better off and makes all other hiring firms worse off
- one more searching worker makes hiring firms better off and makes all other searching workers worse off
- Appropriability
- firm pays a cost κ to post vacancy but does not get to keep the entire output y

Efficiency

- What value of θ would the social planer choose to maximize total output/utility if he is constrained by the same matching frictions?
- does not care about wage b / c it's a linear transfer from the firm to the worker
- Does there exist a wage such that job creation is the same in the decentralized equilibrium as in the social planners outcome?
- Can we achieve this wage with the Nash solution?

Social Planner's Problem

$$
\begin{gathered}
\max _{u, \theta} \int_{0}^{\infty} e^{-r t}[y(1-u)+b u-\kappa \theta u] d t \\
\text { s.t. } \quad \dot{u}=p(\theta) u-\delta(1-u)
\end{gathered}
$$

- Social planner's problem
- $y(1-u)$: social output of employment
- bu: leisure enjoyed by unemployed workers
- $\kappa \theta u$: cost of jobs
- Social planner is subject to the same transition equation for unemployment

Social Planner's Problem

- The Hamiltonian

$$
H=e^{-r t}[y(1-u)+b u-\kappa \theta u]+\mu(t)[\delta(1-u)-p(\theta) u]+\dot{\mu}(t) u
$$

- FOCs

$$
\begin{aligned}
H_{u}=0 \Rightarrow & -e^{-r t}(y-b+\kappa \theta)-[\delta+p(\theta)] \mu+\dot{\mu}=0 \\
H_{\theta}=0 \Rightarrow & -e^{-r t} \kappa u-\mu u q(\theta)(1-\beta)=0
\end{aligned}
$$

- Solve for costate variable

$$
\mu=\frac{-e^{-r t} \kappa}{q(\theta)(1-\beta)}
$$

- Solve for $\dot{\mu}=d \mu / d t$

$$
\dot{\mu}=-r \mu
$$

Social Planner's Problem

- Using $p(\theta)=\theta q(\theta)$ and plugging into $H_{u}=0$

$$
\begin{equation*}
(1-\beta)(y-b)-\frac{\delta+r+\beta p(\theta)}{q(\theta)} \kappa=0 \tag{1}
\end{equation*}
$$

- From the decentralized solution, plug the wage curve into the Job creation curve

$$
\begin{equation*}
(1-\gamma)(y-b)-\frac{\delta+r+\gamma p(\theta)}{q(\theta)} \kappa=0 \tag{2}
\end{equation*}
$$

Efficiency

- Comparing (1) and (2) we see that we have efficiency in the decentralized market if $\beta=\gamma$. The workers bargaining power is equal to the elasticity of the matching function with respect to u.
- Let $\eta(\theta)$ be the elasticity of the job filling rate $(q(\theta))$, the general result is that we have efficiency when

$$
\eta(\theta)=\gamma
$$

- This is called the Hosios (1990) condition

