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So Far

® So far we have talked about Maximum Likelihood Estimation
¢ Today:

® Generalized Method of Moments (GMM)
¢ Next Time:

® Simulated Method of Moments (SMM)

® Touch on indirect inference (SMM is indirect inference)



Generalized Method of Moments

® Y.: n-dimensional vector of observations

® t does not have to mean time, could be people
® unemployment, wages, duration, observables
characteristics, ect..

® (y: vector of true parameters

® g(Y: 0): a vector valued function of data and parameters
® such that E[g(Y;, 60)] =0

® where does g come from?



Generalized Method of Moments

® Basic idea is we replace E[] with empirical analog

E[g Yf? ng Yt>

® The GMM estimate of 6, is

0 = argmin (% ;Tlg(yt, 9)>/W <% ig(Yt, 9))

0 —

where W is the weighting matrix.

® |n practice we replace W with W computed using the data



Asymptotic Distribution of GMM Estimator

The asymptotic distribution of GMM Estimator is

V(0 — 0g) — N(0, (S WIS WQWI(J WJI)?)

J = E[Vg(Y:,0)]: jacobian of g

Q = E[g(Ys, 00)g(Ye, 60)]

If we have W = Q1

Vn(f — 80) — N(0, ()Y



GMM In Practice

® We can not set W = Q~!, we don't know
® |terated GMM:

1: Take VT/(l) = | (identity matrix) estimate 9A(1)
2: Calculate

T -1
N 1 N ~
2) = (T Zg(vt,e(l))g(vt,em)’)
t=1

3: Repeat 1 & 2, each time with VAV(,-H)(QA(,-)) until
convergence

¢ Continuously updating GMM: Estimate as

- ap(3 S o3 )

€O



Same Simple Example: Model

e Model

® unemployed workers receive job offers at rate A

® job offers are drawn from an exogenous wage
distribution F(w)

® jobs get destroyed at rate §

® workers discount at rate r



Same Simple Example: Model

® Value functions and reservation wage

rU:b—l—)\/ooE(W)—UdF(W)

WR

rE(w) = w +[U — E(w)]



Same Simple Example: Model

® \What are the parameters of the model that we want to
estimate?

® \: arrival rate of job offers
® b: unemployment flow utility
® r: discount rate
® ): separation rate
® F(w): wage offer distribution
® let's make the same assumption about the dist.

® F(w)~InN(u, o)



Same Simple Example, Same Identification Issues

® We will use data4.csv to estimate parameters
® column 1: dummy =1 if unemployed
® column 2: unemployment duration
® column 3: wages of employed

® column 4: employment duration

® \We have the same identification issues as MLE

® wg is a function of all the parameters
® use wg = min{wy, wy, ..., wy}

® set r = 0.05



Parameters and Moments

® \We have 4 parameters to estimate

°* \ o, o0

® \What moments can we use?



Parameters and Moments

® \We have 4 parameters to estimate

® )\ b, u o

® \What moments can we use?

1.

unemployment rate

. expected unemployment duration
. expected employment duration
. first moment of wage

. second moment of wage or variance



GMM estimator notation

e {Y,}: the observables
e forus: Y; = {u;, tu;, w;, te;} for i =1,.... N = 10,000
® 0: (N0, o)

® g(Y;,0): function of data and parameters such that
Elg(Yi.0)] =0

® for us: difference between empirical moment and
theoretical (calculated from the model) moment



GMM estimator notation: Theoretical Moments

® unemployment rate

0

5+ A1 — F(wg;p,o0)]

® expected unemployment duration

1

A1 — F(wg; p, 0)]

® expected employment duration

1

5
e first moment truncated log-normal

O.2> ¢(H+02—|”(WR))

Elw: p, 0] = exp (H+2 W

® second moment of truncated log-normal

g

® ,u-&-202—|n(WR)
) ( In(wg)— L)
1o ()

E[w?; i1, 0] = exp(2u + 20°



GMM estimator notation: g

e g({Y:},0) returns a (M x N) vector, for us (5 x 10, 000)
e g(Y;,0) returns a (M x 1)

vi— FEI=F (o)l

tui — sm— 1
I A1—F(wg;ip,o)]
g(Yiv 9) = te; — %

e Let N =[N, N,, N.,N.,N.] and N,, N, is the number of
unemployed and employed then

N7y " g(Yi,0) — Elg(Y;,0)]

i=1



Estimation in Matlab

e Use datad.csv
e File 1: SE3_main.m
e File 2: g function.m

® inputs: parameters, data, wg estimate

® output: (M x N) matrix of moments

e File 3: GMM.m

® inputs: parameters, data, wg estimate, N

® outputs: weighted squared distance

® [irst estimate with W = | then calculate efficient W and
re-estimate



Estimation in Matlab: Standard errors

® First we will need the Jacobian Matrix

® Add on: Adaptive Robust Numerical Differentiation

® jacobianest(fun,x0)

® The function we are differentiating

N

N1y g(V:,0)

i=1

should return a (M x dim(6)) matrix. For us: (5 x 4)

e Evaluating at X0 = GMM _estsl



Estimation in Matlab: Standard errors

® Estimate of Q matrix

N
Q=N g(V:,0)8(Y:,0)

i=1

® Variance-Covariance Matrix (with W = 1)

V=W I wWawI(JS W)

diag(V)
td =
S Y

e Standard errors




Estimation in Matlab: Answers

GMM MLE
Parameter  Estimate  Std. Err.] Estimate  Std. Err.
A 0.2994 0.0117 0.2820 0.0127
0 0.0222 0.0002 0.0225 0.0009
1 2.2043 0.0195 2.2339 0.0119
o 0.4023 0.0087 0.3794 0.0043

e Data is generated using same underlying parameters
e Asymptotically MLE std. err. smaller than GMM std. err.
® MLE is the minimum variance unbiased estimator

e Note: we are using more information in the GMM (te;)



Estimation in Matlab: Updated weighting matrix

e Calculate new weighting matrix
Ww=Q!

9.1490 0.0000 —0.0000 0.0011 —0.0000
0.0000  0.0257 —0.0000 0.0000 —0.0000
W = | —0.0000 —0.0000 0.0005 —0.0002 0.0000
0.0012  0.0000 —0.0002 1.5591 —0.0457
—0.0000 —0.0000 0.0000 —0.0457 0.0014

e Estimate with new weighting matrix



Estimation in Matlab: Answers

GMM W = Q! GMM W =1
Parameter  Estimate  Std. Err.| Estimate  Std. Err.
A 0.2981 0.0115 0.2994 0.0117
) 0.0222 0.0002 0.0222 0.0002
1 2.2060 0.0194 2.2043 0.0195
o 0.4016 0.0087 0.4023 0.0087

® standard errors get slightly smaller

® we can repeat again, but when do we stop?

[ Wiisn) — Wipl| <e



GMM vs MLE

e MLE Strengths

® more statistical significance
® |ess sensitive to parameter or model normalizations

® |ess bias and more efficiency with small samples

e MLE Weaknesses

® require strong distributional assumptions

® likelihood function can become highly non-linear



GMM vs MLE

* GMM Strengths
® minimal distributional assumptions
® more flexible identification

® strongly consistent with large samples
gly g p

e GMM Weaknesses

® |ess statistical significance
® more sensitive to normalizations

® often large bias and inefficiency with small samples



Choosing between GMM and MLE

1. How much data do you have?
2. How complex/non-linear is the model?

3. How comfortable are you making distributional assumptions?

® wages are log-normal is not so controversial

® what about an ability or human capital distribution?



A Note on g(Y;,0)

® Sometimes we choose to minimize the moment error function

m(Yy,0) — m(Y:)

e(Y:,0) = m(Y2)

® m(Y;, 0): moments calculated using model
® m(Y;): moments calculated using data

Then the GMM estimate is

é:argminGzT:e(vt,e))/WG - e(Yt,9)>

0€o =1 =1

The error function is percent deviation from moment

Puts all the moments in the same units
® no moment gets unintended weighting due to units

Can also start with a W; = I /(empirical moments)



Next Time

e With this model we were able to find closed form solutions
to the theoretical moments

® This will not always (rarely!) be the case
e Simulated Method of Moments (SMM)
® given a set of parameters
® simulate data from the model

® calculate moments in simulated data

® compare to moments from observed data



