Structural Estimation: Generalized Method of Moments

Christine Braun

So Far

- So far we have talked about Maximum Likelihood Estimation
- Today:
 - Generalized Method of Moments (GMM)
- Next Time:
 - Simulated Method of Moments (SMM)
 - Touch on indirect inference (SMM is indirect inference)

Generalized Method of Moments

- Y_t: n-dimensional vector of observations
 - t does not have to mean time, could be people
 - unemployment, wages, duration, observables characteristics, ect..
- θ_0 : vector of true parameters
- $g(Y_t, \theta)$: a vector valued function of data and parameters
 - such that $E[g(Y_t, \theta_0)] = 0$
 - where does *g* come from?

Generalized Method of Moments

• Basic idea is we replace $E[\cdot]$ with empirical analog

$$E[g(Y_t,\theta)] \rightarrow \frac{1}{T} \sum_{t=1}^{T} g(Y_t,\theta)$$

• The GMM estimate of θ_0 is

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \left(\frac{1}{T} \sum_{t=1}^{T} g(Y_t, \theta) \right)' W\left(\frac{1}{T} \sum_{t=1}^{T} g(Y_t, \theta) \right)$$

where W is the weighting matrix.

• In practice we replace W with \hat{W} computed using the data

Asymptotic Distribution of GMM Estimator

• The asymptotic distribution of GMM Estimator is

$$\sqrt{n}(\hat{\theta} - \theta_0) \rightarrow N(0, (J'WJ)^{-1}J'W\Omega WJ(J'WJ)^{-1})$$

•
$$J = E[\nabla_{\theta}g(Y_t, \theta)]$$
: jacobian of g

•
$$\Omega = E[g(Y_t, \theta_0)g(Y_t, \theta_0)']$$

If we have W = Ω⁻¹

$$\sqrt{n}(\hat{ heta} - heta_0)
ightarrow Nig(0, (J'\Omega J)^{-1}ig)$$

GMM In Practice

- We can not set $W = \Omega^{-1}$, we don't know Ω
- Iterated GMM:

1: Take $\hat{W}_{(1)} = I$ (identity matrix) estimate $\hat{\theta}_{(1)}$ 2: Calculate

$$\hat{W}_{(2)} = \left(\frac{1}{T}\sum_{t=1}^{T}g(Y_t, \hat{\theta}_{(1)})g(Y_t, \hat{\theta}_{(1)})'\right)^{-1}$$

- 3: Repeat 1 & 2, each time with $\hat{W}_{(i+1)}(\hat{\theta}_{(i)})$ until convergence
- Continuously updating GMM: Estimate as

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \left(\frac{1}{T} \sum_{t=1}^{T} g(Y_t, \theta) \right)' \hat{W}(\theta) \left(\frac{1}{T} \sum_{t=1}^{T} g(Y_t, \theta) \right)$$

Same Simple Example: Model

- Model
 - unemployed workers receive job offers at rate λ
 - job offers are drawn from an exogenous wage distribution F(w)
 - jobs get destroyed at rate δ
 - workers discount at rate r

Same Simple Example: Model

• Value functions and reservation wage

$$rU = b + \lambda \int_{w_R}^{\infty} E(w) - U \, dF(w)$$
$$rE(w) = w + \delta[U - E(w)]$$
$$w_R = b + \frac{\lambda}{r + \delta} \int_{w_R} w - w_R \, dF(w)$$

Same Simple Example: Model

- What are the parameters of the model that we want to estimate?
 - λ : arrival rate of job offers
 - *b*: unemployment flow utility
 - r: discount rate
 - δ : separation rate
 - *F*(*w*): wage offer distribution
 - let's make the same assumption about the dist.
 - $F(w) \sim \ln N(\mu, \sigma)$

Same Simple Example, Same Identification Issues

- We will use data4.csv to estimate parameters
 - column 1: dummy =1 if unemployed
 - column 2: unemployment duration
 - column 3: wages of employed
 - column 4: employment duration
- We have the same identification issues as MLE
 - w_R is a function of all the parameters
 - use $\hat{w}_R = \min\{w_1, w_2, ..., w_N\}$
 - set *r* = 0.05

Parameters and Moments

• We have 4 parameters to estimate

• What moments can we use?

Parameters and Moments

• We have 4 parameters to estimate

- What moments can we use?
 - 1. unemployment rate
 - 2. expected unemployment duration
 - 3. expected employment duration
 - 4. first moment of wage
 - 5. second moment of wage or variance

GMM estimator notation

• $\{Y_t\}$: the observables

• for us:
$$Y_i = \{u_i, tu_i, w_i, te_i\}$$
 for $i = 1, ..., N = 10,000$

- $g(Y_i, \theta)$: function of data and parameters such that $E[g(Y_i, \theta)] = 0$
 - for us: difference between empirical moment and theoretical (calculated from the model) moment

GMM estimator notation: Theoretical Moments

unemployment rate

 $\frac{\delta}{\delta + \lambda [1 - F(w_R; \mu, \sigma)]}$

• expected unemployment duration

$$\frac{1}{\lambda[1 - F(w_R; \mu, \sigma)]}$$

expected employment duration

• first moment truncated log-normal

$$E[w; \mu, \sigma] = \exp\left(\mu + \frac{\sigma^2}{2}\right) \frac{\Phi\left(\frac{\mu + \sigma^2 - \ln(w_R)}{\sigma}\right)}{1 - \Phi\left(\frac{\ln(w_R) - \mu}{\sigma}\right)}$$

second moment of truncated log-normal

$$E[w^{2}; \mu, \sigma] = \exp(2\mu + 2\sigma^{2}) \frac{\Phi\left(\frac{\mu + 2\sigma^{2} - \ln(w_{R})}{\sigma}\right)}{1 - \Phi\left(\frac{\ln(w_{R}) - \mu}{\sigma}\right)}$$

GMM estimator notation: g

- $g({Y_i}, \theta)$ returns a $(M \times N)$ vector, for us $(5 \times 10,000)$
- $g(Y_i, \theta)$ returns a $(M \times 1)$

$$g(Y_i, \theta) = \begin{bmatrix} u_i - \frac{\delta}{\delta + \lambda [1 - F(w_R; \mu, \sigma)]} \\ tu_i - \frac{1}{\lambda [1 - F(w_R; \mu, \sigma)]} \\ te_i - \frac{1}{\delta} \\ w_i - E[w; \mu, \sigma] \\ w_i^2 - E[w^2; \mu, \sigma] \end{bmatrix}$$

• Let $\tilde{N} = [N, N_u, N_e, N_e, N_e]$ and N_u , N_e is the number of unemployed and employed then

$$ilde{N}^{-1}\sum_{i=1}^N g(Y_i,\theta) o E[g(Y_i,\theta)]$$

Estimation in Matlab

- Use data4.csv
- File 1: SE3_main.m
- File 2: g_function.m
 - inputs: parameters, data, w_R estimate
 - output: $(M \times N)$ matrix of moments
- File 3: GMM.m
 - inputs: parameters, data, w_R estimate, N
 - outputs: weighted squared distance
- First estimate with W = I then calculate efficient W and re-estimate

Estimation in Matlab: Standard errors

- First we will need the Jacobian Matrix
 - Add on: Adaptive Robust Numerical Differentiation
 - jacobianest(fun,x0)
- The function we are differentiating

$$\tilde{N}^{-1}\sum_{i=1}^{N}g(Y_i,\theta)$$

should return a $(M \times dim(\theta))$ matrix. For us: (5×4)

• Evaluating at $x0 = \text{GMM}_\text{ests1}$

Estimation in Matlab: Standard errors

Estimate of Ω matrix

$$\hat{\Omega} = ilde{N}^{-1} \sum_{i=1}^{N} g(Y_i, heta) g(Y_i, heta)'$$

• Variance-Covariance Matrix (with W = I)

$$\hat{V} = (J'WJ)^{-1}J'W\hat{\Omega}WJ(J'WJ)^{-1}$$

Standard errors

$$\mathsf{std} = \sqrt{rac{\mathsf{diag}(\hat{V})}{\mathsf{N}}}$$

Estimation in Matlab: Answers

	GMI	N	MLE		
Parameter	Estimate	Std. Err.	Estimate	Std. Err.	
$\overline{\lambda}$	0.2994	0.0117	0.2820	0.0127	
δ	0.0222	0.0002	0.0225	0.0009	
μ	2.2043	0.0195	2.2339	0.0119	
σ	0.4023	0.0087	0.3794	0.0043	

- Data is generated using same underlying parameters
- Asymptotically MLE std. err. smaller than GMM std. err.
- MLE is the minimum variance unbiased estimator
- Note: we are using more information in the GMM (te_i)

Estimation in Matlab: Updated weighting matrix

• Calculate new weighting matrix

$$\hat{W} = \hat{\Omega}^{-1}$$

	9.1490	0.0000	-0.0000	0.0011	-0.0000
	0.0000	0.0257	-0.0000	0.0000	-0.0000
$\hat{W} =$	-0.0000	-0.0000	0.0005	-0.0002	0.0000
	0.0012	0.0000	-0.0002	1.5591	-0.0457
	-0.0000	-0.0000	0.0000	-0.0457	0.0014

• Estimate with new weighting matrix

Estimation in Matlab: Answers

	GMM W	$= \hat{\Omega}^{-1}$	$GMM\ W=I$		
Parameter	Estimate	Std. Err.	Estimate	Std. Err.	
$\overline{\lambda}$	0.2981	0.0115	0.2994	0.0117	
δ	0.0222	0.0002	0.0222	0.0002	
μ	2.2060	0.0194	2.2043	0.0195	
σ	0.4016	0.0087	0.4023	0.0087	

- standard errors get slightly smaller
- we can repeat again, but when do we stop?

$$||W_{(i+1)} - W_{(i)}|| < \varepsilon$$

GMM vs MLE

• MLE Strengths

- more statistical significance
- less sensitive to parameter or model normalizations
- less bias and more efficiency with small samples
- MLE Weaknesses
 - require strong distributional assumptions
 - likelihood function can become highly non-linear

GMM vs MLE

- GMM Strengths
 - minimal distributional assumptions
 - more flexible identification
 - strongly consistent with large samples
- GMM Weaknesses
 - less statistical significance
 - more sensitive to normalizations
 - often large bias and inefficiency with small samples

Choosing between GMM and MLE

- 1. How much data do you have?
- 2. How complex/non-linear is the model?
- 3. How comfortable are you making distributional assumptions?
 - wages are log-normal is not so controversial
 - what about an ability or human capital distribution?

A Note on $g(Y_t, \theta)$

· Sometimes we choose to minimize the moment error function

$$e(Y_t,\theta) = \frac{m(Y_t,\theta) - m(Y_t)}{m(Y_t)}$$

- $m(Y_t, \theta)$: moments calculated using model
- $m(Y_t)$: moments calculated using data
- Then the GMM estimate is

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \left(\frac{1}{T} \sum_{t=1}^{T} e(Y_t, \theta) \right)' W\left(\frac{1}{T} \sum_{t=1}^{T} e(Y_t, \theta) \right)$$

- The error function is percent deviation from moment
- Puts all the moments in the same units
 - no moment gets unintended weighting due to units
- Can also start with a $W_1 = I/(\text{empirical moments})$

Next Time

- With this model we were able to find closed form solutions to the theoretical moments
- This will not always (rarely!) be the case
- Simulated Method of Moments (SMM)
 - given a set of parameters
 - simulate data from the model
 - calculate moments in simulated data
 - compare to moments from observed data