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Previously

® Up until now we have assumed jobs arrive at a poisson rate

® the hazard rate is constant over the duration

h=A[l - G(wg)]

® Does this seem like a reasonable assumption?



Previously

® Up until now we have assumed jobs arrive at a poisson rate
® the hazard rate is constant over the duration

h=A[l - G(wg)]

® Does this seem like a reasonable assumption? No

® )\ might change over the spell, there might be stigma,
people might change their search effort

® wr might change over the spell, may lose
unemployment benefits



Hazard Rate Definition

e Definition: Let f and F be the pdf and cdf of t, then the
hazard (failure) rate is

P(T € [t,t+dt)|T > t)

h(t) = dlf.!To dt
_f()
"=1"Fm

e Integrate both sides and solve for F(t)

/Oth(u) du:/otlj(—;_izu) du

F(t) = 1— exp (- /ot h(u) du)



More Flexibility

¢ Poisson Process: h(t) = h, plugging into F(t), gives
exponential arrival times

F(t)=1—e ™
f(t) = he™"
e Weibull hazard: h(t) = at*!, plugging into F(t), gives
arrival times following a Weibull distribution
Fity=1—¢e"

f(t) = at* e



Duration Dependence

e With a hazard rate at®?
® o =1: h(t) is flat (poisson process)
® o < 1: h(t) is decreasing, negative duration dependence
® o > 1: h(t) is increasing, positive duration dependence
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MLE with Weibull hazard rate

¢ Individual’s Contribution: Probability of observing a
duration t
f(ti;a) = attte

® | og-Likelihood function:

o {t}) = Zlnf (t;; )

N
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Estimation in Matlab

® Using data3.csv
® File 1: SE2_main.m

® read in data
® extract just duration from data matrix
® create lower bound and initial guess

® estimate

® File 2: loglike3.m

® inputs: parameters, duration

® output: negative log-likelihood value



Weibull Hazard Answer

e Estimates and Standard Errors

Parameter Estimate Standard Error

« 0.5221 0.0005

® | og-Likelihood Value

logl = —2.6073e + 4

e Why do we get negative duration dependence?



Selection Effect

® QObservable characteristics could affect the hazard rate

e Example: h. is the hazard rate of high educated and h is
the hazard rate of low educated, both constant over time
® hhe > hle
® u(t): fraction of high educated in pool of unemp.
® 1,(t): fraction of low educated in pool of unemp.

= h(t) = Upe(t) X hpe + te(t) X hye

e |f we estimate h(t) without covariates we will get negative
duration dependence because of a selection effect
® high educated people leave unemp. first (hpe > hje) so
the average hazard rate decreases over time



Proportional Hazard Model

® Define the hazard as

h(t|x) = 1(t) x ho(x)

ho(x) is called the systematic part and 1(t) is called the
baseline hazard.

® The systematic part is commonly given an functional form
assumption
ho(x) = exp(x')
covariates affect the hazard rate log-linearly. We then
estimate /3.



Proportional Hazard Model

22 Proportional Hazard Rate

—x=1
» —x=1.5
Xx=2
1.8[
=16
=
8
©
[
o
°
5
T 12
s L
0.8
0.6 L
0 5 10 15

Time

Plotted: h(t) = 0.8t%% exp(0.5x)



Proportional Hazard Model

® Assume Weibull baseline
Y(t) = at*!
® Assume log-linear covariates
ho(x) = exp(x'f3)
® The cdf of duration
F(tlx)=1—exp (— /Otexp(x’ﬁ)auo‘1 du>

F(t]x) =1 — exp(— exp(x'B)t")
® The pdf of duration

f(t|x) = exp(x' )t Le~ ePX'A)L



MLE with Weibull baseline & Log-linear Covariates

¢ Individual’s Contribution: Probability of observing a
duration t
f(ti|xi; o, B) = exp(x,fﬁ)at,-a_le_ exp(x; B)t}*
® |og-Likelihood function:

Lo, fi{ti}, {xi}) = Z In £(ti|xi; o, B)

N
= Zx{ﬁ +Ina+ (a—1)Int; — exp(x/ )t
i=1



Estimation in Matlab

® Using data3.csv
e File 1: SE2_main.m

® create a vector x that contains a dummy for women
® create lower bound and initial guess

® estimate

® File 2: loglike4.m

® inputs: parameters, duration, covariates

® output: negative log-likelihood value



Weibull Hazard & Log-linear Covariates Answer

e Estimates and Standard Errors

Parameter Estimate Standard Error
« 0.5809 0.0025
Bre -0.5956 0.0345

® |og-Likelihood Value

logl = —2.5202¢ + 4
e \What happened to the estimate of a?
® |et's add the education covariates

educDummy = dummyvar( )



Weibull Hazard & Log-linear Covariates Answer

e Estimates and Standard Errors

Parameter Estimate Standard Error

a 0.6503 0.0038
Bre -0.3628 0.0067
Beduc2 -0.5817 0.0194
Beducs -0.5583 0.0044

® | og-Likelihood Value

logl = —2.4363e + 4

® \What happened to the estimate of a and SBrg?

® Could we still have a selection effect?



Mixed Proportional Hazard Model

® Define the hazard rate as

h(t|x,v) = v x (t) x ho(x)

® ¢)(t): baseline hazard
® ho(x): systematic part
® v: unobserved heterogeneity, “error term”

® v~ G(v) where G is called the mixing distribution

® can make a parametric assumption (usually Gamma)

® can estimate non-parametrically



Mixed Proportional Hazard Model

® Assume Weibull baseline

U(t) = at®™

Assume log-linear covariates

ho(x) = exp(x'B)

Assume a there exists a mixing distribution G(v)
The cdf of duration

F(t|x,v) =1 — exp(—v exp(x'3)t*)

The pdf of duration

f(t|X7 V) = VeXp(X/B)Oéta_le—l/exp(xlg)t@



Parametric Estimation

® Parametric estimation of mixing distribution

Choose G(v; 0) with support [0, c0) and parameters 6

Integrate out of duration pdf

f(t|x) = /000 f(tx,v) x g(v) dv

This is often a difficult integral (¥ ~ Gamma has a
closed-form solution)

We would get an MLE of 6

Heckman & Stinger (1984) show instability of
parameter estimates depending on the assumptions on
the mixing distribution



Non-Parametric Estimation

® Non-Parametric estimation of mixing distribution
® \We discretize G
* {1}, set of pointsin G
 {m}}<,: the probability of point j

® Sum over the points to get the full distribution of durations

f(t|x) = ij x f(t|x,v))

® The likelihood function we be a function of {1}/, and
{m;}/<, and we get ML estimates of each point and it's
probability.



Non-Parametric Estimation: Example

® | et's estimate with K =2

¢ Individual’s Contribution: Probability of observing a
duration t

f(tilxi; o, B,11) = 11 exp(xiB)at? te ™ exp(x; B)t

f(tilxi; a, B, 1) = vaexp(xiB)at? te exp(xj B¢

¢ | og-Likelihood function:

‘C(avﬁv {Vj}a {Wj}; {ti}v {Xi}) = Zln[ﬂ-l X f(ti|Xi;a/757 Vl)

+mp x f(ti|xi; v, B, 12)]



Non-Parametric Estimation: Example

e Maximize L(a, 5, {v;}, {m;}; {t;i}, {x:}) with respect to
* a>0
® [3: no restrictions
® u, v, all >0

® 1, m € [0,1]

® Subjecttom +m =1



Syntax

= fmincon(fun,x0,A,b)

= fmincon(fun,x0,A,b,Aeq, beq)
fmincon(fun,x®,A,b,Aeq, beq, lb,ub)

= fmincon(fun,x0,A,b,Aeq,beq, lb,ub,nonlcon)

= fmincon(fun,x®,A,b,Aeq, beq, lb,ub,nonlcon,options)

x = fmincon(problem)

[x,fvall = fmincon( __)

[x,fval,exitflag,output] = fmincon( __)
[x,fval,exitflag,output, lambda,grad,hessian] = fmincon( __)

X X X X X
Il

Description
Nonlinear programming solver.

Finds the minimum of a problem specified by
c(x) <0
ceq(x) =0
min f(x) such that A-x<bh
! Aeq - x = beg
Ib < x < ub,



Estimation in Matlab

® Using data3.csv

e File 1: SE2_main.m
® create lower bound and initial guess
® create Aeq (1 x 8) and beq (1 x 1)
® estimate

® File 2: loglike5.m

® inputs: parameters, duration, covariates

® output: negative log-likelihood value



Estimation Answer

e [Estimates and Standard Errors

Parameter Estimate Standard Error
« 0.8854 0.1226
1 0.0936 0.0373
Vo 0.3795 0.0182
m 0.0807 0.1211
D) 0.9193 1.2941
Bre 0.0597 0.2088
Beduc2 0.0069 0.3952
Beducs 0.0276 0.1594

® | og-Likelihood Value

logl = —2.2976e + 4

® \What happened to « and 37



Estimation in Matlab

® | et's estimate with K = 3

® Use the same likelihood function but add another point in
the mixing distribution

f(tilxi; a, B,11) = 11 exp(xiB)at? te ™ exp(xj At

f(tilxi; a, B, 1) = voexp(xiB)at? te 2 exp(x; At

f(tilxi; o, B,v3) = 3 exp(x,{ﬁ)on‘,-o‘_le_”3 exp(x; )t



Estimation Answer

e Estimates and Standard Errors

Parameter Estimate Standard Error
« 0.9810 0.0166
7] 0.0399 0.0394
Vs 0.2005 0.0888
Vo 0.6037 0.2449
m 0.0266 0.0493
D) 0.5168 1.4205
T3 0.4566 0.2708
BFE 0.0713 0.0695
Beduc2 0.0008 0.2776
Beducs 0.0267 0.0334

® | og-Likelihood Value

logl = —2.2945¢ + 4

® \What happened to o and 37



How may points should we estimate?

® Adding points will improve fit
® Adding too many points is computationally costly
® Use likelihood ratio test to find best K

® test goodness of fit of two competing models, one is a
restricted version of the other

® stop adding points when the information gained from
K + 1 points is not statistically significant



Likelihood Ratio Test

® Unrestricted model: parameter space is ©

hgHO)

where rank(0) = r

® Restricted model: constrained parameter space is ©g

g HO)

where rank(0) = r — q
e Likelihood-ratio test statistic:

MaXgee, L(e) :|

Ap=—2I
LR n [ maxgeo L(0)

where A\ g — X?(q)



Likelihood Ratio Test: Example

e Unrestricted model: the model where K = 3,

oY = {Oé, BEE, Beducts Beduc2s V1, V2, V3, T1, T2, 7T3}

rank(6Y) = 10

Inmax L(6) = —2.2945¢e + 4
00

® Restricted model: the model where K = 2, where we
restricted 13 = 0 and 713 =0

0F = {04, BFE, Beduct, Beduc2, V1, V2,7T1,7T2}
rank(6%) = 8

Inmax L(f) = —2.2976e + 4
0cO



Likelihood Ratio Test: Example

o Likelihood-ratio test statistic:
AR = —2[—2.2976e + 4 — (—2.2945¢e + 4)] = 61.9539

® P-value: Probability that a chi-squared RV with 2 degrees
of freedom is larger than 61.9539

1 — chi2cdf(61.9539,2) = 3.5194e — 14

so we reject the null hypothesis, i.e. the restricted model.
K = 3 points is statistically significantly better than K = 2.

e Keep estimating by adding one more point until we fail to
reject restricted model.



So do we have duration dependence?

® We need a lot of data to estimate a good mixing distribution

® Can not tell if negative duration dependence is selection
driven or structural

e Kroft, Lange, Notowidigdo (2013): investigate employer
behavior in duration dependence

® send out many fake resumes

® vary the length of unemployment duration

® show call-back rate decrease with unemployment
duration



