Structural Estimation: Duration Dependence & Non-parametric Estimation

Christine Braun

Previously

• Up until now we have assumed jobs arrive at a poisson rate

• the hazard rate is constant over the duration

$$h = \lambda [1 - G(w_R)]$$

• Does this seem like a reasonable assumption?

Previously

• Up until now we have assumed jobs arrive at a poisson rate

• the hazard rate is constant over the duration

$$h = \lambda [1 - G(w_R)]$$

- Does this seem like a reasonable assumption? No
 - λ might change over the spell, there might be stigma, people might change their search effort
 - *w_R* might change over the spell, may lose unemployment benefits

Hazard Rate Definition

• **Definition:** Let *f* and *F* be the pdf and cdf of *t*, then the hazard (failure) rate is

$$h(t) = \lim_{dt \to 0} \frac{P(T \in [t, t + dt) | T \ge t)}{dt}$$
$$h(t) = \frac{f(t)}{1 - F(t)}$$

• Integrate both sides and solve for F(t)

$$\int_0^t h(u) \, du = \int_0^t \frac{f(u)}{1 - F(u)} \, du$$
$$F(t) = 1 - \exp\left(-\int_0^t h(u) \, du\right)$$

More Flexibility

• Poisson Process: h(t) = h, plugging into F(t), gives exponential arrival times

$$F(t) = 1 - e^{-ht}$$
$$f(t) = he^{-ht}$$

• Weibull hazard: $h(t) = \alpha t^{\alpha-1}$, plugging into F(t), gives arrival times following a Weibull distribution

$$F(t) = 1 - e^{-t^{\alpha}}$$
$$f(t) = \alpha t^{\alpha - 1} e^{-t^{\alpha}}$$

Duration Dependence

- With a hazard rate $\alpha t^{\alpha-1}$
 - $\alpha = 1$: h(t) is flat (poisson process)
 - $\alpha < 1$: h(t) is decreasing, negative duration dependence
 - $\alpha > 1$: h(t) is increasing, positive duration dependence

MLE with Weibull hazard rate

Individual's Contribution: Probability of observing a duration t

$$f(t_i;\alpha) = \alpha t_i^{\alpha-1} e^{-t_i^{\alpha}}$$

• Log-Likelihood function:

$$\begin{split} \mathcal{L}(\alpha; \{t_i\}) &= \sum_{i=1}^N \ln f(t_i; \alpha) \\ &= \sum_{i=1}^N \ln \alpha + (\alpha - 1) \ln t_i - t_i^\alpha \end{split}$$

Estimation in Matlab

- Using data3.csv
- File 1: SE2_main.m
 - read in data
 - extract just duration from data matrix
 - create lower bound and initial guess
 - estimate
- File 2: loglike3.m
 - inputs: parameters, duration
 - output: negative log-likelihood value

Weibull Hazard Answer

Estimates and Standard Errors

Parameter	Estimate	Standard Error
α	0.5221	0.0005

• Log-Likelihood Value

$$logL = -2.6073e + 4$$

• Why do we get negative duration dependence?

Selection Effect

- Observable characteristics could affect the hazard rate
- **Example:** *h_{he}* is the hazard rate of high educated and *h_{le}* is the hazard rate of low educated, both constant over time
 - $h_{he} > h_{le}$
 - $u_{he}(t)$: fraction of high educated in pool of unemp.
 - $u_{le}(t)$: fraction of low educated in pool of unemp. $\Rightarrow h(t) = u_{he}(t) \times h_{he} + u_{le}(t) \times h_{le}$
- If we estimate *h*(*t*) without covariates we will get negative duration dependence because of a **selection effect**
 - high educated people leave unemp. first (*h_{he} > h_{le}*) so the average hazard rate decreases over time

Proportional Hazard Model

Define the hazard as

$$h(t|x) = \psi(t) \times h_0(x)$$

 $h_0(x)$ is called the *systematic part* and $\psi(t)$ is called the *baseline hazard*.

• The systematic part is commonly given an functional form assumption

$$h_0(x) = exp(x'\beta)$$

covariates affect the hazard rate log-linearly. We then estimate $\beta.$

Proportional Hazard Model

Plotted: $h(t) = 0.8t^{0.8-1}exp(0.5x)$

Proportional Hazard Model

Assume Weibull baseline

$$\psi(t) = \alpha t^{\alpha - 1}$$

• Assume log-linear covariates

$$h_0(x) = \exp(x'eta)$$

The cdf of duration

$$egin{aligned} \mathcal{F}(t|x) &= 1 - \expigg(- \int_0^t \exp(x'eta) lpha u^{lpha - 1} \, du igg) \ \mathcal{F}(t|x) &= 1 - \exp(-\exp(x'eta) t^{lpha}) \end{aligned}$$

The pdf of duration

$$f(t|x) = \exp(x'\beta) \alpha t^{\alpha-1} e^{-\exp(x'\beta)t^{lpha}}$$

MLE with Weibull baseline & Log-linear Covariates

• Individual's Contribution: Probability of observing a duration *t*

$$f(t_i|x_i;\alpha,\beta) = \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\exp(x_i'\beta)t_i^{\alpha}}$$

• Log-Likelihood function:

$$\mathcal{L}(\alpha,\beta;\{t_i\},\{x_i\}) = \sum_{i=1}^{N} \ln f(t_i|x_i;\alpha,\beta)$$
$$= \sum_{i=1}^{N} x'_i\beta + \ln \alpha + (\alpha - 1) \ln t_i - \exp(x'_i\beta)t_i^{\alpha}$$

Estimation in Matlab

- Using data3.csv
- File 1: SE2_main.m
 - create a vector x that contains a dummy for women
 - create lower bound and initial guess
 - estimate
- File 2: loglike4.m
 - inputs: parameters, duration, covariates
 - output: negative log-likelihood value

Weibull Hazard & Log-linear Covariates Answer

• Estimates and Standard Errors

Parameter	Estimate	Standard Error
$\overline{\alpha}$	0.5809	0.0025
$\beta_{\textit{FE}}$	-0.5956	0.0345

• Log-Likelihood Value

$$logL = -2.5202e + 4$$

- What happened to the estimate of α?
- Let's add the education covariates

Weibull Hazard & Log-linear Covariates Answer

• Estimates and Standard Errors

Parameter	Estimate	Standard Error
$\overline{\alpha}$	0.6503	0.0038
$\beta_{\textit{FE}}$	-0.3628	0.0067
β_{educ2}	-0.5817	0.0194
eta_{educ3}	-0.5583	0.0044

Log-Likelihood Value

$$logL = -2.4363e + 4$$

- What happened to the estimate of α and β_{FE} ?
- Could we still have a selection effect?

Mixed Proportional Hazard Model

• Define the hazard rate as

$$h(t|x,\nu) = \nu \times \psi(t) \times h_0(x)$$

- $\psi(t)$: baseline hazard
- $h_0(x)$: systematic part
- *ν*: unobserved heterogeneity, "error term"
- $\nu \sim G(\nu)$ where G is called the mixing distribution
 - can make a parametric assumption (usually Gamma)
 - can estimate non-parametrically

Mixed Proportional Hazard Model

• Assume Weibull baseline

$$\psi(t) = \alpha t^{\alpha - 1}$$

• Assume log-linear covariates

$$h_0(x) = \exp(x'\beta)$$

- Assume a there exists a mixing distribution $G(\nu)$
- The cdf of duration

$$F(t|x,\nu) = 1 - \exp(-\nu \exp(x'\beta)t^{\alpha})$$

• The pdf of duration

$$f(t|x,\nu) =
u \exp(x'eta) lpha t^{lpha - 1} e^{-
u \exp(x'eta) t^{lpha}}$$

Parametric Estimation

- Parametric estimation of mixing distribution
 - Choose G(
 u; heta) with support $[0, \infty)$ and parameters heta
 - Integrate out of duration pdf

$$f(t|x) = \int_0^\infty f(t|x,
u) imes g(
u) \ d
u$$

- This is often a difficult integral ($u \sim$ Gamma has a closed-form solution)
- We would get an MLE of θ
- Heckman & Stinger (1984) show instability of parameter estimates depending on the assumptions on the mixing distribution

Non-Parametric Estimation

- Non-Parametric estimation of mixing distribution
 - We discretize G
 - $\{\nu_j\}_{j=1}^{K}$: set of points in G
 - $\{\pi_j\}_{j=1}^{K}$: the probability of point j
- Sum over the points to get the full distribution of durations

$$f(t|x) = \sum_{j=1}^{K} \pi_j \times f(t|x,\nu_j)$$

The likelihood function we be a function of {ν_j}^K_{j=1} and {π_j}^K_{j=1} and we get ML estimates of each point and it's probability.

Non-Parametric Estimation: Example

• Let's estimate with K = 2

• Individual's Contribution: Probability of observing a duration *t*

$$f(t_i|x_i;\alpha,\beta,\nu_1) = \nu_1 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_1 \exp(x_i'\beta)t_i^{\alpha}}$$

$$f(t_i|x_i;\alpha,\beta,\nu_2) = \nu_2 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_2 \exp(x_i'\beta)t_i^{\alpha}}$$

• Log-Likelihood function:

$$\mathcal{L}(\alpha,\beta,\{\nu_j\},\{\pi_j\};\{t_i\},\{x_i\}) = \sum_{i=1}^N \ln[\pi_1 \times f(t_i|x_i;\alpha,\beta,\nu_1) + \pi_2 \times f(t_i|x_i;\alpha,\beta,\nu_2)]$$

Non-Parametric Estimation: Example

- Maximize $\mathcal{L}(\alpha, \beta, \{\nu_j\}, \{\pi_j\}; \{t_i\}, \{x_i\})$ with respect to
 - α > 0
 - β : no restrictions
 - ν_1 , ν_2 , all > 0
 - π_1 , $\pi_2 \in [0, 1]$
- Subject to $\pi_1 + \pi_2 = 1$

Syntax

```
x = fmincon(fun, x0, A, b)
```

```
x = fmincon(fun, x0, A, b, Aeq, beq)
```

```
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
```

- x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
- x = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)

```
x = fmincon(problem)
```

```
[x,fval] = fmincon(___)
```

```
[x,fval,exitflag,output] = fmincon( ____)
```

```
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(___)
```

Description

Nonlinear programming solver.

Finds the minimum of a problem specified by

$$\min_{x} f(x) \text{ such that} \begin{cases} c(x) \le 0\\ ceq(x) = 0\\ A \cdot x \le b\\ Aeq \cdot x = beq\\ lb \le x \le ub, \end{cases}$$

Estimation in Matlab

- Using data3.csv
- File 1: SE2_main.m
 - create lower bound and initial guess
 - create Aeq (1×8) and beq (1×1)
 - estimate
- File 2: loglike5.m
 - inputs: parameters, duration, covariates
 - output: negative log-likelihood value

Estimation Answer

• Estimates and Standard Errors

Parameter	Estimate	Standard Error
$\overline{\alpha}$	0.8854	0.1226
ν_1	0.0936	0.0373
ν_2	0.3795	0.0182
π_1	0.0807	0.1211
π_2	0.9193	1.2941
$\beta_{\textit{FE}}$	0.0597	0.2088
eta_{educ2}	0.0069	0.3952
β_{educ3}	0.0276	0.1594

• Log-Likelihood Value

$$logL = -2.2976e + 4$$

• What happened to
$$lpha$$
 and eta ?

Estimation in Matlab

- Let's estimate with K = 3
- Use the same likelihood function but add another point in the mixing distribution

$$f(t_i|x_i;\alpha,\beta,\nu_1) = \nu_1 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_1 \exp(x_i'\beta)t_i^{\alpha}}$$

$$f(t_i|x_i;\alpha,\beta,\nu_2) = \nu_2 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_2 \exp(x_i'\beta)t_i^{\alpha}}$$

$$f(t_i|x_i;\alpha,\beta,\nu_3) = \nu_3 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_3 \exp(x_i'\beta)t_i^{\alpha}}$$

Estimation Answer

• Estimates and Standard Errors

Parameter	Estimate	Standard Error
α	0.9810	0.0166
ν_1	0.0399	0.0394
ν_2	0.2005	0.0888
ν_2	0.6037	0.2449
π_1	0.0266	0.0493
π_2	0.5168	1.4205
π_3	0.4566	0.2708
β_{FE}	0.0713	0.0695
eta_{educ2}	0.0008	0.2776
$eta_{\it educ3}$	0.0267	0.0334

• Log-Likelihood Value

$$logL = -2.2945e + 4$$

• What happened to α and β ?

How may points should we estimate?

- Adding points will improve fit
- Adding too many points is computationally costly
- Use likelihood ratio test to find best K
 - test goodness of fit of two competing models, one is a restricted version of the other
 - stop adding points when the information gained from K + 1 points is not statistically significant

Likelihood Ratio Test

• Unrestricted model: parameter space is Θ

 $\max_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\boldsymbol{L}(\boldsymbol{\theta})$

where $rank(\theta) = r$

• Restricted model: constrained parameter space is Θ₀

 $\max_{\theta\in\Theta_0}L(\theta)$

where $rank(\theta) = r - q$

• Likelihood-ratio test statistic:

$$\lambda_{\mathit{LR}} = -2 \ln \left[rac{\max_{ heta \in \Theta_0} L(heta)}{\max_{ heta \in \Theta} L(heta)}
ight]$$

where $\lambda_{LR} \rightarrow \chi^2(q)$

Likelihood Ratio Test: Example

• **Unrestricted model:** the model where K = 3,

$$\theta^{U} = \{\alpha, \beta_{FE}, \beta_{educ1}, \beta_{educ2}, \nu_1, \nu_2, \nu_3, \pi_1, \pi_2, \pi_3\}$$
$$rank(\theta^{U}) = 10$$
$$\ln \max_{\theta \in \Theta} L(\theta) = -2.2945e + 4$$

• **Restricted model:** the model where K = 2, where we restricted $\nu_3 = 0$ and $\pi_3 = 0$

$$\theta^{R} = \{\alpha, \beta_{FE}, \beta_{educ1}, \beta_{educ2}, \nu_{1}, \nu_{2}, \pi_{1}, \pi_{2}\}$$
$$rank(\theta^{R}) = 8$$
$$\ln \max_{\theta \in \Theta} L(\theta) = -2.2976e + 4$$

Likelihood Ratio Test: Example

• Likelihood-ratio test statistic:

$$\lambda_{LR} = -2[-2.2976e + 4 - (-2.2945e + 4)] = 61.9539$$

• **P-value:** Probability that a chi-squared RV with 2 degrees of freedom is larger than 61.9539

$$1 - chi2cdf(61.9539, 2) = 3.5194e - 14$$

so we reject the null hypothesis, i.e. the restricted model. K = 3 points is statistically significantly better than K = 2.

• Keep estimating by adding one more point until we fail to reject restricted model.

So do we have duration dependence?

- We need a lot of data to estimate a good mixing distribution
- Can not tell if negative duration dependence is selection driven or structural
- Kroft, Lange, Notowidigdo (2013): investigate employer behavior in duration dependence
 - send out many fake resumes
 - vary the length of unemployment duration
 - show call-back rate decrease with unemployment duration