Intro to Search and Matching in the Labor Market

Christine Braun

Outline for the next weeks

- Week 6
 - Today: Stigler (1961) & McCall (1970)
 - 9 Nov: The wage distribution
- Week 7
 - 14 Nov: Diamond, Mortensen, Pissarides
 - 16 Nov: Labor Supply and Data
- Week 8
 - 21 Nov: Structural Estimation: MLE
 - 23 Nov: Structural Estimation: GMM
- Week 9
 - 28 Nov: Structural Estimation: SMM
 - 30 Nov: Structural Estimation: Non-Parametric
- Week 10
 - 5 Dec: Structural Estimation: EM Algorithm
 - 7 Dec: Spillover or Directed Search

Outline for the next weeks

- What you need
 - Matlab: recommended, this is what I will use
 - Python
 - R
 - Julia
- Assignment 1: Due 10 January 2024
 - recommend you work on this throughout the course
 - I will let you know when we have covered what you need to know for each question
 - there will be some time allocated during the following lecture to ask any questions

Two types of labor market models

- Walrasian Markets
 - wages are often marginal product
 - people don't need to look for jobs
- Market with frictions
 - models of unemployment
 - understanding how people search for jobs
 - understanding how people flow between E and U

What are Frictions?

• Search Frictions: it takes time or money (or both) for buyers and seller to find each other

• Matching Frictions: when buyers and sellers meet they may not be a good, or the best match

What are some markets with frictions?

- Labor Market: workers are looking for jobs, it takes time to apply to jobs. Firms are looking for workers, it costs money to interview people.
- Housing Market: buyers are looking for homes
- Marriage Market: everyone's looking for someone
- Asset Market: Over-the-counter markets for non-routine financial asses

Walrasian Model does not work with frictions

- From a Walrasian perspective
 - Excess demand: vacant jobs
 - Excess supply: unemployed workers
 - Unemployment explained by wages being too high to clear the market
 - Vacancies explained by wages being too low to clear the market
- How can excess demand and excess supply coexist?

Labor Market in the US

Labor Market in the UK

How do we model markets with frictions

- the individual's decision problem:
 - how to search for a job, search effort
 - which jobs to accept
- the firm's decision problem:
 - how many workers they need
 - how much to pay
- an equilibrium
 - number of unemployed and vacancies
 - a wage distribution

A Short Chronological Outline

- **One-sided Search:** individual decision problem, optimal stoping problem.
 - McCall (1970)
- 1-st Generation Equilibrium Search: random search models with wage posting. Consider workers decisions of accepting jobs and firms decisions on wages.
- Matching and Bargaining: Diamond, Mortensen, Pissarides (DMP). Also take into consideration the firms decision to post vacancies.
- Directed (Competitive): Workers decide *which* jobs to apply to.

Stigler (1961): The Economics of Information

- **Observation:** Prices of homogenous goods vary across seller
 - Chevrolets
 - Coal
- **Theory:** People must visit multiple sellers to get the best price, people search
- **Question:** How do you decide how many seller to visit before you know enough of the price distribution to buy the good?
 - How many wage offers should you get before you take the best job?

- Suppose there are two prices: \$2 and \$3
- Seller are split equally between the prices

Number of	Probability of Minimum		Expected
Prices	Price of		Minimum
Sampled	\$2	\$3	Price

- How many prices should you sample if it's costless to search?
- How many prices should you sample if it's costly to search?

- Suppose there are two prices: \$2 and \$3
- Seller are split equally between the prices

Number of	Probability of Minimum		Expected
Prices	Price of		Minimum
Sampled	\$2	\$3	Price
1	0.5	0.5	2.5

- How many prices should you sample if it's costless to search?
- How many prices should you sample if it's costly to search?

- Suppose there are two prices: \$2 and \$3
- Seller are split equally between the prices

Number of	Probability of Minimum		Expected
Prices	Price of		Minimum
Sampled	\$2	\$3	Price
1	0.5	0.5	2.5
2	0.75	0.25	2.25

- How many prices should you sample if it's costless to search?
- How many prices should you sample if it's costly to search?

- Suppose there are two prices: \$2 and \$3
- Seller are split equally between the prices

Number of	Probability of Minimum		Expected
Prices	Price of		Minimum
Sampled	\$2	\$3	Price
1	0.5	0.5	2.5
2	0.75	0.25	2.25
3	0.875	0.125	2.125

- How many prices should you sample if it's costless to search?
- How many prices should you sample if it's costly to search?

- Suppose there are two prices: \$2 and \$3
- Seller are split equally between the prices

Number of	Probability of Minimum		Expected
Prices	Price of		Minimum
Sampled	\$2	\$3	Price
1	0.5	0.5	2.5
2	0.75	0.25	2.25
3	0.875	0.125	2.125
∞	1	0	2

- How many prices should you sample if it's costless to search?
- How many prices should you sample if it's costly to search?

Stigler (1961): The Economics of Information

- There exists some price distribution F(p)
- cost of making one draw: c
- First what's the probability that p is the minimum of n draws

$$H(p) = P(\min_{i} X_{i} < p) = 1 - P(\min_{i} X_{i} > p)$$

= $1 - [1 - F(p)]^{n}$

$$h(p) = n[1 - F(p)]^{n-1}f(p)$$

• Let M_n be the expected value of the min value of n samples

$$M_n = n \int_0^\infty p[1 - F(p)]^{n-1} f(p) \ dp$$

Stigler (1961): The Economics of Information

The gain from drawing one more sample

$$G_n = M_{n-1} - M_n$$

= $(n-1) \int_0^\infty p[1-F(p)]^{n-2} f(p) \, dp - n \int_0^\infty p[1-F(p)]^{n-1} f(p) \, dp$
= $\int_0^\infty p[1-F(p)]^{n-1} f(p)[nF(p)-1] \, dp$

- G_n is decreasing in $n \Rightarrow \lim_{n\to\infty} G_n = 0$
- Optimal number of draws: n s.t. $G_{n+1} > c > G_n$

• Environment:

- workers search for jobs, infinitely lived, discount at β
- cost of search each period: κ
- while unemployed worker gets c
- if searching, each period she draws an offer from F(w)
- if she accepts the job, it lasts forever

- Objective:
 - maximize expected discounted earnings

$$\mathbb{E}\sum_{0}^{\infty}\beta^{t}Y_{t}$$

• income each period depends on employment state

$$Y_t = egin{cases} c - \kappa & ext{if unemployed} \ w & ext{if employed} \ w & ext{if employed} \end{cases}$$

• Trade off:

- Waiting too long for a good offer is costly
- Accepting too early is costly, since better offers might arrive in the future

• Solution:

- optimal stoping problem
- the reservation wage: w_R

$$w \ge w_R \Rightarrow$$
 accept the job
 $w < w_R \Rightarrow$ keep searching

• How does this relate to Stigler's optimal number of draws problem?

• Solution:

- optimal stoping problem
- the reservation wage: w_R

$$w \ge w_R \Rightarrow$$
 accept the job
 $w < w_R \Rightarrow$ keep searching

- How does this relate to Stigler's optimal number of draws problem?
 - **Stigler:** *n* determines the expected maximum price we are going to pay, non-sequential search

• Solution:

- optimal stoping problem
- the reservation wage: w_R

 $w \ge w_R \Rightarrow$ accept the job $w < w_R \Rightarrow$ keep searching

- How does this relate to Stigler's optimal number of draws problem?
 - **Stigler:** *n* determines the expected maximum price we are going to pay, non-sequential search
 - Here: *w_R* determines the expected time of unemployment, how many periods on average we have to wait before we get an acceptable wage, sequential search

McCall Model - Solving Numerically

- With an offer of w in hand worker can
 - accept the job and get

$$\frac{w}{1-\beta}$$

reject the job and get

 $c + \beta$ [get new offer tomorrow]

• Recursive formulation of the objective:

$$V(w) = -\kappa + \max\left\{rac{w}{1-eta}, \ c+eta\int V(w)dF(w)
ight\}$$

McCall Model - Solving Numerically

Policy Function

 Let σ(w) be the policy function, σ(w) = 1 if we accept the job

$$\frac{w}{1-\beta} > c + \beta \int V(w) \, dF(w)$$
$$w > (1-\beta) \left[c + \beta \int V(w) \, dF(w) \right]$$

- This condition depends on the value function!
- Solve value function numerically: QuantEcon

• Now that we have V(w) we can solve for

$$ar{V} = c + eta \int V(w) \ dF(w)$$

where \bar{V} is a constant

• The reservation wage makes us indifferent

$$\frac{w_R}{1-\beta} = \bar{V}$$

w/(1 − β) is an increasing function of β and V
 is constant so we have a solution to w_R.

- But for this simple model we can do better than this
- Rewrite the problem with two value function: E(w), U

• suppose $\kappa = 0$

• The value of employment at wage w

$$E(w) = w + \beta E(w)$$
(1)
$$E(w) = \frac{w}{1 - \beta}$$

• Value of unemployment

$$U = c + \beta \int \max\{U, E(w)\} \ dF(w)$$
 (2)

• Reservation wage

$$E(w_R) = U$$
$$\frac{w_R}{1-\beta} = U$$

$$\frac{w_R}{1-\beta} = c + \beta \int_0^{w_R} \frac{w_R}{1-\beta} \, dF(w) + \beta \int_{w_R}^{\infty} \frac{w}{1-\beta} \, dF(w)$$

$$\int_0^{w_R} \frac{w_R}{1-\beta} + \int_{w_R}^\infty \frac{w_R}{1-\beta}$$
$$= c + \beta \int_0^{w_R} \frac{w_R}{1-\beta} \ dF(w) + \beta \int_{w_R}^\infty \frac{w}{1-\beta} \ dF(w)$$

$$w_R \int_0^{w_R} dF(w) - c = \int_{w_R}^{\infty} \frac{\beta w - w_R}{1 - \beta} dF(w)$$

• Adding
$$w_R \int_{w_R}^{\infty} dF(w)$$
 to both sides
 $w_R - c = \frac{\beta}{1 - \beta} \int_{w_R}^{\infty} (w - w_R) dF(w)$

• Integration by parts:

$$\int_{w_R}^{\infty} (w - w_R) \ dF(w) = \int_{w_R}^{\infty} [1 - F(w)] \ dw$$

• So finally we have

$$w_R-c=rac{eta}{1-eta}\int_{w_R}^\infty [1-F(w)]\ dw$$

QuantEcon

McCall Model - Unemployment Duration

• The probability of getting a job in a given period

$$H=1-F(w_R)$$

- *H* is called the hazard function
- What is the probability of being unemployed for *n* periods

$$P(\operatorname{dur} = n) = (1 - H)^{n-1}H$$

• The expected unemployment duration

$$\mathbb{E}[\mathsf{dur}] = \sum_{n=0}^{\infty} n(1-H)^{n-1}H = \frac{1}{H}$$

Moving to Continuous Time

- McCall model is written in discrete time
 - each period you get one offer
 - each period you decide to accept or reject
- A lot of labor search models are written in continuous time
 - since we don't have periods we need an arrival rate of job offers $\pmb{\alpha}$
- α is a Poisson arrival rate

Poisson Arrival Process

- In an infinitesimal unit of time dt only one arrival will occur with probability αdt
- The number of arrivals N(t) in a finite time period t has a poisson distribution

$$P(N(t) = n) = \frac{(\alpha t)^n}{n!} e^{-\alpha t}$$

• Arrival times are independent and the time until arrival has an exponential distribution

$$P(T > t) = e^{-\alpha t}$$

Poisson Arrival Process - Two Properties

• **Memoryless**: for $t_1 \ge 0$ and $t_2 \ge 0$

$$egin{aligned} & P(T > t_1 + t_2) = P(T > t_1)P(T > t_2) \ & P(T > t_1 + t_2 | t_1) = P(T > t_2) \end{aligned}$$

- Is unemployment a memoryless process?
- Random Selection: if each arrival is selected with probability *p*, independent of other arrivals, then the resulting process is a poisson process with intensity *αp*
 - The reservation wage is independent of the number of offers you have received

Moving to Continuous Time

- Environment
 - w, b are an instantaneous flows
 - α is a poisson arrival rate of jobs
 - r is the discount rate
- Value of Employment a period of length dt

$$E(w) = \frac{wdt + E(w)}{1 + rdt}$$

• Take the limit as $dt \rightarrow 0$

$$rE(w) = w$$

For next time

• Homework:

- 1. Write down the value function for employment (1) and unemployment (2) if you have a probability δ of losing your job every period.
- 2. Derive the continuous time value functions if δ is the poisson rate of losing your job
- **Think About:** Where does the wage distribution come from?