The Wage Distribution

Christine Braun

Homework Answers

1. Write down the value function for employment and unemployment if you have a probability δ of losing your job every period.

$$
\begin{aligned}
& U=b+\beta \int \max \{U, E(w)\} d F(w) \\
& E(w)=w+\beta[\delta U+(1-\delta) E(w)]
\end{aligned}
$$

Homework Answers

2. Derive the continuous time value functions if δ is the poisson rate of losing your job

$$
\begin{gathered}
E(w)=\frac{w d t+\delta d t U+(1-\delta d t) E(w)}{1+r d t} \\
r d t E(w)=w d t+\delta d t[U-E(w)] \\
r E(w)=w+\delta[U-E(w)] \\
U=\frac{b d t+\alpha d t \int \max \{U, E(w)\} d F(w)+(1-\alpha d t) U}{1+r d t} \\
r d t U=b d t+\alpha d t \int \max \{U, E(w)\} d F(w)-\alpha d t U \\
r d t U=b d t+\alpha d t \int \max \{0, E(w)-U\} d F(w) \\
r U=b+\alpha \int_{w_{R}}[E(w)-U] d F(w)
\end{gathered}
$$

Where does $F(w)$ come from?

- are firms posting wages to maximizes profits?
- why would firms post different wages? heterogeneity?
- Rothschild critique
- Diamond paradox

Example

- Workers
- unit mass of identical workers
- flow value of unemployment $b=0$
- workers search for jobs
- once a worker accepts a new worker is born and searches

Example

- Firms
- a continuum of firms with different productivities
- $y \in[0, \infty)$ is productivity drawn from c.d.f. $G(y)$
- firms post single vacancy at cost $\gamma>0$
- filled jobs last forever
- discount at rate β
- price of output normalized to 1

Example....the issue

- what does the wage offer distribution look like?
- if firms post wages to max profits: it will be degenerate!

Example

- Worker's Problem
- choose whether or not to accept an offer

$$
a: \mathbb{R}_{+} \rightarrow[0,1]
$$

- from before:

$$
a(w)= \begin{cases}1 & \text { if } w \geq w_{R} \\ 0 & \text { otherwise }\end{cases}
$$

Example

- Firm's Problem
- given the workers strategy $a(w)$ the firm chooses
- to post a vacancy

$$
p: Y \rightarrow\{0,1\}
$$

- the wage to post

$$
w: Y \rightarrow \mathbb{R}_{+}
$$

- given the decision to post, firms max profits

$$
\begin{aligned}
\max _{w} & \pi(y) \\
\max _{w} & \frac{1}{n} \frac{(y-w)}{1-\beta}-\gamma \\
\text { s.t. } & w \geq w_{R} \& n=\int p(y) d G(y)
\end{aligned}
$$

Example

- Firms solution
- the wage decision

$$
w(y)=w_{R}
$$

- the posting decision

$$
p(y)= \begin{cases}1 & \text { if } \pi(y) \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- The wage distribution
- Rothschild critique: it's degenerate! $F(w(y))=w_{R} \forall y$
- Diamond paradox: all firms offer $b=w_{R}$

How do we get a wage distribution?

- Firms choose wages to max profits
- Albrecht-Axell (1984): heterogeneity in b
- Burdett-Judd (1983): multiple applications
- Burdett-Mortensen (1998): on the job search

The Search Environment

- Assumptions about the search process
- Sequential Search: Workers receive offers sequentially (typically the cost of search is time rather than a monetary cost). ex: McCall model
- Non-sequential Search: Workers choose the number of applications to send at a cost c per application, then choose the highest wage offer. ex: Stigler
- Burdett-Judd (1983): non-sequential search

Burdett-Judd

- The setup: One-shot game with a continua of workers and firms
- Workers: decide how many wage offers to sample
- Firms: decide what wage to offer
- Environment
- μ : measure of job seekers relative to firms
- p : revenue per employee
- b : workers value of leisure
- c : cost per additional application (first application is free)

Equilibrium

- Equilibrium Objects:
- $\left\{q_{N}\right\}_{n=1}^{\infty}$: fraction of workers sampling n wages
- w_{R} : reservation wage
- $F(w)$: distribution of wage offers
- $\pi(w)$:expected profit at w
- Definition: An equilibrium is the set of objects above s.t.,

1. Given $\left\{q_{N}\right\}_{n=1}^{\infty}$ and w_{R}

$$
\begin{aligned}
& \pi(w)=\pi \forall w \text { in the support of } F \\
& \pi(w)<\pi \forall w \text { not in the support of } F
\end{aligned}
$$

2. Given $F(w), w_{R}$ is optimal and $\left\{q_{N}\right\}_{n=1}^{\infty}$ is generated by the income-maximizing strategies of workers.

Firms Strategies

- Take workers strategies $\left\{q_{N}\right\}_{n=1}^{\infty}$ as given. What possible wages will the firm post?

1. $q_{1}=1$: all workers only sample one wage
2. $q_{1}=0$: all workers sample more than one wage
3. $q_{1} \in(0,1)$: some workers sample one wage

Firms Strategies

- Take workers strategies $\left\{q_{N}\right\}_{n=1}^{\infty}$ as given. What possible wages will the firm post?

1. $q_{1}=1$: all workers only sample one wage

$$
\Rightarrow w=b(\text { Diamond })
$$

2. $q_{1}=0$: all workers sample more than one wage
3. $q_{1} \in(0,1)$: some workers sample one wage

Firms Strategies

- Take workers strategies $\left\{q_{N}\right\}_{n=1}^{\infty}$ as given. What possible wages will the firm post?

1. $q_{1}=1$: all workers only sample one wage

$$
\Rightarrow w=b(\text { Diamond })
$$

2. $q_{1}=0$: all workers sample more than one wage

$$
\Rightarrow w=p(\text { Bertrand })
$$

3. $q_{1} \in(0,1)$: some workers sample one wage

Firms Strategies

- Take workers strategies $\left\{q_{N}\right\}_{n=1}^{\infty}$ as given. What possible wages will the firm post?

1. $q_{1}=1$: all workers only sample one wage

$$
\Rightarrow w=b(\text { Diamond })
$$

2. $q_{1}=0$: all workers sample more than one wage

$$
\Rightarrow w=p(\text { Bertrand })
$$

3. $q_{1} \in(0,1)$: some workers sample one wage
$\Rightarrow F(w)$ is continuous with compact support $[b, \bar{w}]$ where $\bar{w}<p$

Understanding $F(w)$

- $F(w)$ is continuous: suppose there is an atom in $F(w)$ at \tilde{w}. Then a firm could increase profits by offering $\tilde{w}+\varepsilon$.
- $\bar{w}<p$: If some workers only sample one wage, $q_{1}>0$ then $w=p$ can not be optimal.
- b is the lower bound of the support of $F(w)$: Suppose $\underline{\mathrm{w}}>b$, any worker willing to accept $\underline{\mathrm{w}}$ in equilibrium would also be willing to accept $\underline{\mathrm{w}}-\varepsilon$.

What do firm profits look like?

- If the firm choses $w=b$, only get workers who sample one wage

$$
\pi(b)=\mu q_{1}(p-b)
$$

- If the firm chooses $w=\bar{w}$, can attract all workers

$$
\pi(\bar{w})=\mu(p-\bar{w}) \sum_{n=1}^{\infty} n q_{n}
$$

- But in equilibrium all firms must make the same profit

$$
\pi(b)=\pi(\bar{w})=\pi(w) \quad \forall w \text { in the support of } \mathrm{F}(\mathrm{w})
$$

Workers Strategy

- Suppose all firms offer $w=b$:
- Suppose all firms offer $w=p$:

Workers Strategy

- Suppose all firms offer $w=b$:
$\Rightarrow q_{1}=1$, all workers sample one wage. There is always a monopsony equilibrium!
- Suppose all firms offer $w=p$:

Workers Strategy

- Suppose all firms offer $w=b$:
$\Rightarrow q_{1}=1$, all workers sample one wage. There is always a monopsony equilibrium!
- Suppose all firms offer $w=p$:
$\Rightarrow q_{1}=1$, all workers sample one wage. But for all firms to offer $w=p$ it must be that no worker samples one wage $\left(q_{1}=0\right)$. There is never a competitive equilibrium.

Workers Strategy

- Suppose there exist a wage distribution $F(w)$

Workers Strategy

- Suppose there exist a wage distribution $F(w)$
\Rightarrow Since workers are identical they all sample the same number of wage (not an equailibrium!) or they are indifferent between sampling n or $n+1$ number of wage.

Workers Strategy

- Suppose there exist a wage distribution $F(w)$
\Rightarrow Since workers are identical they all sample the same number of wage (not an equailibrium!) or they are indifferent between sampling n or $n+1$ number of wage.
\Rightarrow Since $q_{1} \in(0,1)$ for there to be a wage distribution it must be that $q_{1}+q_{2}=1$

Characterizing $F(w)$

- Fix $q_{1} \in(0,1)$

$$
\pi(w)=(p-w) \mu\left(q_{1}+2\left(1-q_{1}\right) F(w)\right)
$$

- Since profits are equal for all $w \in[b, \bar{w}]$

$$
\begin{gathered}
\pi(b)=\pi(w) \Rightarrow(p-b) \mu q_{1}=(p-w) \mu\left(q_{1}+2\left(1-q_{1}\right) F(w)\right) \\
F(w)=\frac{q_{1}(w-b)}{2(p-w)\left(1-q_{1}\right)}
\end{gathered}
$$

- Still missing q_{1}

Solving for q_{1}

- Marginal benefit of sampling 2 wages instead of 1 must equal c

$$
V\left(q_{1}\right)=2 \int_{b}^{\bar{w}} w f(w) F(w) d w-\int_{b}^{\bar{w}} w f(w) d w
$$

where $f(w)$ and $F(w)$ are functions of q_{1}

- Two solutions for $V\left(q_{1}\right)=c, V\left(q_{1}\right) \rightarrow 0$ as $q_{1} \rightarrow 1$ or 0
- Suppose q_{1} is close to zero, then almost all wages close to p, little benefit to sending a second application
- Suppose q_{1} is close to one, then almost all wage close to b, little benefit to sending second application

Burdett-Mortensen (1998)

- Key Idea: On the job search generates a continuous wage distribution with no mass points.
- Intuition: High wage firms earn less profit per worker but attract more workers so equilibrium profits for firms are equal across the wage distribution.
- Limits of the model: Diamond outcome is the limit as on-the-job search disappears and competitive equilibrium as search frictions disappear.

Environment

- set in continuous time
- measure m of workers
- workers and firms are identical and discount the future at rate r
- workers are either employed or unemployed and receive job offers at poisson rate
- λ_{0} when unemployed
- λ_{1} when employed
- workers draw wage offers from known distribution $F(w)$
- workers receive b when unemployed
- workers lose their jobs at rate δ

Workers

- Unemployed

$$
r U=b+\lambda_{0}[
$$

- Employed

$$
r E(w)=w+\lambda_{1}[
$$

Workers

- Unemployed

$$
\begin{gathered}
r U=b+\lambda_{0}\left[\int \max \{U, E(w)\} d F(w)-U\right] \\
r U=b+\lambda_{0} \int_{R}^{\bar{w}} E(w)-U d F(w)
\end{gathered}
$$

- Employed

$$
\begin{aligned}
& r E(w)=w+\lambda_{1}\left[\int \max \left\{E(w), E\left(w^{\prime}\right)\right\} d F\left(w^{\prime}\right)-E(w)\right]+\delta[U-E(w)] \\
& r E(w)=w+\lambda_{1} \int_{w}^{\bar{w}} E\left(w^{\prime}\right)-E(w) d F\left(w^{\prime}\right)+\delta[U-E(w)]
\end{aligned}
$$

Firms

- Firms choose w to maximize their profits

$$
\pi=\max _{w}(p-w) \ell(w \mid R, F)
$$

- w determines
- the revenue per worker $(p-w)$
- the number of workers $\ell(w \mid R, F)$

Steady State and Equilibrium

- Steady State:
- an unemployment rate that does not change
- a distribution of wages paid $G(w)$
- Equilibrium Objects:
- offered wage distribution $F(w)$
- the reservation wage R
- the profits of firms π
- Equilibrium Definition: the set of objects s.t. R is the reservation wage of the workers and profits are equal for all wages in the support of $F(w)$.

Steady State - Unemployment Rate

- in steady state the number of unemployed does not change
- inflow: $\delta(m-u)$
- outflow: $\lambda_{0}[1-F(R)] u$
- the steady state number of unemployed

$$
u=\frac{\delta m}{\delta+\lambda_{0}[1-F(R)]}
$$

- the steady state unemployment rate is u / m

Steady State - Distribution of Wages Paid

- The measure of workers earning wage $\leq w$ at time t is

$$
G(w, t)[m-u(t)]
$$

- In steady state $G(w, t)$ does not change

$$
\begin{aligned}
0 & =\frac{\partial G(w, t)}{\partial t} \\
& =\lambda_{0}[F(w)-F(R)] u-\left[\delta+\lambda_{1}(1-F(w))\right] G(w)(m-u)
\end{aligned}
$$

- solving for $G(w)$ gives

$$
G(w)=\frac{\delta[F(w)-F(R)] /[1-F(R)]}{\delta+\lambda_{1}[1-F(w)]}
$$

Labor Supply

- To solve for the equilibrium wage distribution $F(w)$ we need to maximize profits of firms. For this we need labor supplied to each firm. Consider a firm paying w :

$$
\ell(w \mid R, F)=\lim _{\varepsilon \rightarrow 0} \frac{G(w)-G(w-\varepsilon)}{F(w)-F(w-\varepsilon)}(m-u)
$$

- $[G(w)-G(w-\varepsilon)](m-u)$: steady state number of workers earning wage $\in[w, w+\varepsilon]$
- $F(w)-F(w-\varepsilon)$: measure of firms offering wage $\in[w, w+\varepsilon]$

Labor Supply

- The labor supplied to a firm offering $w \geq R$ is

$$
\ell(w \mid R, F)=\frac{\delta m \lambda_{0}\left[\delta+\lambda_{1}(1-F(R))\right] /\left[\delta+\lambda_{0}(1-F(R))\right]}{\left[\delta+\lambda_{1}(1-F(w))\right]^{2}}
$$

- The labor supplies to a firm offering $w<R$ is

$$
\ell(w \mid R, F)=0
$$

- $\ell(w \mid R, F)$ is increasing in w and continuous unless $F(w)$ has a mass point

The Reservation Wage

- The reservation wage R is such that $E(R)=U$, so

$$
R-b=\left(\lambda_{0}-\lambda_{1}\right) \int_{R}^{\bar{w}}[E(w)-U] d F(w)
$$

- Then integration by parts

$$
\begin{aligned}
R-b & =\left(\lambda_{0}-\lambda_{1}\right) \int_{R}^{\bar{w}} E^{\prime}(w)[1-F(w)] d w \\
& =\left(\lambda_{0}-\lambda_{1}\right) \int_{R}^{\bar{w}} \frac{1-F(w)}{r+\delta+\lambda_{1}[1-F(w)]} d w
\end{aligned}
$$

- What happens as $\lambda_{1} \rightarrow \lambda_{0}$?

Equilibrium

- Assume $0 \leq b<p<\infty$ and $0<\lambda_{i}<\infty$ for $i=0,1$.

1. No firm pays less than $R \Rightarrow R \geq \underline{\mathrm{w}}$
2. No pass points: if there exists a mass point at $\tilde{w}<p$ then a firm can increase its wage to $\tilde{w}+\varepsilon \Rightarrow \ell(\cdot)$ would increase a lot (all the workers at the mass point) and profit per worker decrease only slightly.

- So $F(w)$ is continuous with compact support $[\underline{\mathrm{w}}, \bar{w}]$

Equilibrium

- The lower bound of $F(w)$

$$
\ell(\underline{\mathrm{w}} \mid R, F)=\frac{\delta m \lambda_{0}}{\left(\delta+\lambda_{1}\right)\left(\delta+\lambda_{0}\right)} \text { for all } \underline{\mathrm{w}}>R
$$

Since this is a constant w.r.t. w we have that $\underline{w}=R$.

- In the support of $F(w)$ all profits are equal

$$
\begin{gathered}
\frac{(p-R) \delta m \lambda_{0}}{\left(\delta+\lambda_{1}\right)\left(\delta+\lambda_{0}\right)}=(p-w) \ell(w \mid R, F) \\
F(w)=\frac{\delta+\lambda_{1}}{\lambda_{1}}\left[1-\left(\frac{p-w}{p-R}\right)^{\frac{1}{2}}\right]
\end{gathered}
$$

- The upper bound of $F(w)$ is found with $F(\bar{w})=1$

Let's look at some data

- In the model the offer distribution $F(w)$ is different from the observed wage distribution $G(w)$.
- $G(w)$ stochastically dominates $F(w)$
- Can we see this in wage data?
- Christensen et al. (2001) look at Danish wage data
- Calculate g as the observed wage distribution
- Calculate f as the wage distribution of individuals hired out of unemployment

Figure 3.2
Offer (f) and wage (g) densities.

Some Critiques about Burdett-Mortensen

1. Why don't incumbent firms react to offers from outside firms trying to hire their workers?

- Postel-Vinay and Robin (2002): allow for Bertrand competition between firms

2. All wage growth is generated from job-to-job movements. No wage growth within the same job.

- Burdett-Coles (2003): allow firms to post wage-tenure contracts

For next time

- What is the job finding probability?
- what does it depend on?
- does it change over the business cycle?

