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Review and Today

Last time

I solved a simple consumption-savings problem

I set initial wealth that agents consume over a finite period

I consumption path depends on patients vs interest rate

Today

I move to infinite horizon

I agents receive income each period

I how to solve models



Why Infinite Horizon

Why finite horizon is often unrealistic:

I Real people don’t know their exact death date

I Many economic decisions (career choices, education, homeownership) are made as
if life continues indefinitely

I Finite horizon models often produce unrealistic “end effects” where behavior
changes dramatically near the terminal date

Examples where infinite horizon is more appropriate:

I Household savings decisions: Families plan for retirement, children’s education,
emergencies without a fixed endpoint

I Corporate investment: Firms make long-term investments assuming they’ll
operate indefinitely

I Government policy: Social security, infrastructure decisions are made with very
long time horizons



Steady-State Analysis Becomes Relevant

What steady state means:

I A point where key variables (consumption, assets, income) stop changing on
average. The economy’s ”long-run equilibrium” where temporary shocks have
died out.

Why this matters economically:

I Policy analysis: We can study long-run effects of policy changes (tax rates, social
security systems)

I Comparative statics: How do permanent changes in parameters (interest rates,
productivity) affect long-run outcomes?

I Stability analysis: Does the economy return to steady state after shocks?

Example: If the government permanently increases unemployment benefits,
steady-state analysis tells us the new long-run level of precautionary savings.



Transversality Conditions Replace Terminal Conditions

What transversality conditions are:

I Mathematical conditions that prevent “explosive” solutions where variables grow
without bound.

Why this matters:

I Finite horizon: Terminal condition aT ≥ 0 is arbitrary - why exactly zero assets at
death?

I Infinite horizon: Transversality emerges naturally from optimization - no arbitrary
assumptions needed

Mathematical necessity:

I Without this condition, the optimization problem may not have a unique solution

I Prevents agents from achieving infinite utility through infinite borrowing



The Infinite Horizon Problem
Agent: Lives forever, receives income each period, chooses consumption and savings
Objective: Maximize lifetime utility

max
∞∑
t=0

βtu(ct)

Constraints:
I Budget constraint: at+1 = (1 + r)at + yt − ct
I Non-negativity: ct ≥ 0
I Borrowing limit: at ≥ a (natural borrowing limit)
I Transversality condition:

lim
t→∞

βtu′(ct)at = 0

Parameters:
I β ∈ (0, 1): discount factor
I r > 0: interest rate (constant)
I yt : per-period income (may be stochastic)
I u(·): utility function (increasing, concave)



Key Features and Economic Interpretation

Constant income stream:

I Simplest case of income uncertainty: no uncertainty!

I Agent receives y every period forever

Natural borrowing limit:

a = −y

r

Interpretation: Maximum debt sustainable with constant income

Economic applications:

I Government bonds: Country with stable tax revenue

I Pension planning: Retiree with fixed pension income

I Trust funds: Beneficiary receiving constant payments



Transversality Condition: Mathematical Intuition

The condition limt→∞ β
tu′(ct)at = 0 means:

If at > 0 (positive wealth):

I u′(ct)→ 0 as t →∞
I Marginal utility approaches zero

I Agent eventually becomes“rich enough” that extra wealth doesn’t matter

If at < 0 (debt):

I When at < 0, condition becomes a constraint on debt growth

I Reveals fundamental limits on borrowing behavior

I Debt cannot grow faster than rate 1
β − 1

I Prevents explosive debt paths

I Forces eventual debt repayment



Breaking Down the Condition for Debt
When agent has debt (at < 0), the transversality condition becomes:

lim
t→∞

βtu′(ct)at = 0

Since marginal utility is always positive (u′(ct) > 0), we need:

lim
t→∞

βtat = 0

Debt at must grow slower than β−t

at grows slower than

(
1

β

)t

Define subjective discount rate: ρ = 1
β − 1

Key result: Debt cannot grow faster than rate ρ per period



Maximum Debt Growth Rate

Economic interpretation:

I ρ: subjective discount rate (measures impatience)

I Higher ρ (more impatient) ⇒ can sustain faster debt growth

I Lower ρ (more patient) ⇒ must limit debt growth

Examples:

I β = 0.95⇒ ρ = 5.26%: Debt can grow at most 5.26% per year

I β = 0.99⇒ ρ = 1.01%: Debt can grow at most 1.01% per year

I β = 0.90⇒ ρ = 11.11%: Debt can grow at most 11.11% per year



The Role of Patience

Impatient agents (low β, high ρ):

I Care little about future consumption

I High subjective discount rate allows more debt accumulation

I Can sustain borrowing even at moderately high interest rates

I Economic logic: “Don’t mind debt growing fast since future doesn’t matter much”

Patient agents (high β, low ρ):

I Care significantly about future consumption

I Low subjective discount rate severely limits debt accumulation

I Cannot sustain borrowing at high interest rates

I Economic logic: “Must be careful about debt since future matters a lot”

Paradox: More patient people are more constrained in their borrowing ability!



Bellman Equation

Since income is constant, the value function depends only on current assets:

V (a) = max
c≥0,a′≥a

{
u(c) + βV (a′)

}
subject to:

a′ = (1 + r)a + y − c

State variable: Current assets a
Choice variable: Current consumption c , next period assets a′

I can reduce to only c by substituting in the budge constraint

Key features:

I Time-invariant problem (stationary environment)

I Value function V (a) independent of time

I Policy function c∗(a) also time-invariant



First-Order Conditions
Interior solution requires:

u′(c) = βV ′((1 + r)a + y − c)

Envelope theorem:

V ′(a) = β(1 + r)V ′((1 + r)a + y − c∗(a))

where c∗(a) is the optimal consumption policy. Then the envelope condition gives us:

V ′(a′) = (1 + r)u′(c ′)

Combining FOC and envelope condition:

u′(c) = β(1 + r)u′(c ′)

Key insight: Even with constant income, optimal consumption may not be constant -
depends on relationship between β(1 + r) and 1.



Solving Dynamic Programing Problems

What does a solution look like?

I the solution is a set of functions, not a single point

I policy function: how much to consume for a given level of assets

I value function: discounted utility of all future consumption given a level of assets

Three ways to solve

I Guess and Verify (analytical)

I Value function iteration (numerical approximation)

I Policy function iteration (numerical approximation)

Before we discuss how to solve we will discuss when we have a unique solution



What Do We Mean by “Unique Solution”?

1. Value Function Uniqueness:

I Is there a unique V ∗(x) satisfying the Bellman equation?

I Most fundamental type of uniqueness

2. Policy Function Uniqueness:

I Is there a unique optimal policy π∗(x) for each state x?

I Can have unique value function but multiple optimal policies

3. Optimal Path Uniqueness:

I Starting from x0, is the sequence {xt}∞t=0 unique?

I Depends on both value and policy uniqueness



Why Does Uniqueness Matter?
Theoretical importance:
I Well-defined economic models require unique predictions
I Comparative statics analysis needs deterministic responses
I Welfare analysis requires unambiguous optimal policies

Computational implications:
I Numerical algorithms must converge to same solution
I Starting points shouldn’t affect final answer
I Error bounds and convergence rates are meaningful

Policy applications:
I Government policies should have predictable effects
I Firms need unique optimal strategies
I Households should have clear decision rules

When uniqueness fails: Multiple equilibria, coordination problems, model
indeterminacy.



Mathematical Foundations: Metric Spaces

Metric Space: A set X with distance function d : X × X → R+

Properties of distance function:

1. d(x , y) ≥ 0 and d(x , y) = 0 ⇐⇒ x = y (non-negativity and identity)

2. d(x , y) = d(y , x) (symmetry)

3. d(x , z) ≤ d(x , y) + d(y , z) (triangle inequality)

Example for Dynamic Programing: Space of bounded continuous functions with
supremum norm:

d(V1,V2) = ‖V1 − V2‖∞ = sup
x∈X
|V1(x)− V2(x)|

This gives us the mathematical framework for analyzing value functions.



Contraction Mappings

Definition: A mapping T : X → X is a contraction if there exists α ∈ [0, 1) such that:

d(T (x),T (y)) ≤ α · d(x , y) ∀x , y ∈ X

The constant α is called the contraction factor.

Intuition: Contraction mappings bring points closer together

I Take any two points x and y

I After applying T , distance between T (x) and T (y) is smaller

I Factor α < 1 means strict contraction

Key property: If α < 1, repeated application of T makes points converge:

d(T n(x),T n(y)) ≤ αnd(x , y)→ 0 as n→∞



The Contraction Mapping Theorem (Banach Fixed Point Theorem)
Theorem: Let (X , d) be a complete metric space and T : X → X be a contraction
mapping with factor α ∈ [0, 1). Then:

1. Existence and Uniqueness:

∃!x∗ ∈ X such that T (x∗) = x∗

2. Global Convergence:

∀x0 ∈ X , the sequence xn+1 = T (xn) converges to x∗

3. Rate of Convergence:
d(xn, x

∗) ≤ αnd(x0, x
∗)

Simple Interpretation: No matter where you start, repeated application of T leads to
the same unique fixed point.



The Bellman Operator

Consider the dynamic programming problem:

V (a) = max
c∈A(a)

{
u(c) + βV

(
(1 + r)a + y − c

)}
Define the Bellman operator T :

T (V )(a) = max
c∈A(a)

{
u(c) + βV

(
(1 + r)a + y − c

)}
Value function iteration: V n+1 = T (V n)

Fixed point: True value function V ∗ satisfies V ∗ = T (V ∗)

Goal: Show that T is a contraction mapping under appropriate conditions.



When is the Bellman Operator a Contraction?

Theorem: Under the following conditions, T is a contraction with factor β:

1. Discount factor: β ∈ (0, 1)
2. Bounded rewards: supc |u(c)| <∞
3. Compact choice sets: A(a) is compact for all a
4. Continuity: u(c) is continuous

Contraction property:

‖T (V1)− T (V2)‖∞ ≤ β‖V1 − V2‖∞

Implications:

I Unique value function V ∗ exists

I Value function iteration converges to V ∗

I Convergence rate is geometric with factor β



Parameter Restrictions for Uniqueness

1. Discount Factor:

I β ∈ (0, 1): Ensures contraction and unique value function

I β = 1: May lead to non-uniqueness or non-existence

I β > 1: Generally explosive, non-convergent behavior

2. Interest Rates:

I β(1 + r) = 1: May create continuum of optimal consumption paths

I β(1 + r) 6= 1: Generally ensures unique consumption dynamics

3. Technology Parameters:

I Production elasticity α ∈ (0, 1): Ensures diminishing returns

I Risk aversion σ > 0: Ensures strict concavity of utility

I Avoid “knife-edge” parameter values that create indifference



Constraint Structure and Uniqueness

1. Compact Choice Sets:

I Non-compact sets may lead to no optimal solution

I Example: c ∈ [0,∞) vs. c ∈ [0, (1 + r)a + y ]

2. Interior Solutions:

I When optimal choices are interior, first-order conditions determine unique solution

I Corner solutions may create multiple optima

I Inada conditions help ensure interior solutions

3. Continuous Constraint Correspondence:

I A(a) should vary continuously with state a

I Discontinuous constraints can create multiple local optima

I Example: Borrowing limits that depend smoothly on income



Example: Linear Utility

Example: Consumption-savings with linear utility u(c) = c , assume β < 1

Bellman equation:

V (a) = max
c∈A(a)

{c + βV ((1 + r)a + y − c)}

A(a) = [0, (1 + r)a + y ]

Lets check conditions for a contraction:
1. Discount factor: β ∈ (0, 1) X
2. Bounded rewards: supc |u(c)| <∞ X (true in the choice set)
3. Compact choice sets: A(a) is compact for all a X
4. Continuity: u(c) is continuous X

Result: the bellman equation for the simple consumption-savings problem with linear
utility is a contraction → there exits a unique value function V ∗(a)



Linear Utility: The Indifference Problem

Bellman equation:

V (a) = max
c∈A(a)

{c + βV ((1 + r)a + y − c)}

A(a) = [0, (1 + r)a + y ]

When β(1 + r) = 1:

I Agent is indifferent between consuming today vs. tomorrow

I Any consumption path satisfying budget constraint is optimal

I Value function is unique, but policy function is not

Euler equation: 1 = β(1 + r) = 1 (always satisfied)
Economic interpretation: No diminishing marginal utility means no incentive to
smooth consumption.

Unique value function doesn’t guarantee unique policy!



Strict Concavity and Policy Uniqueness

Strict Concavity Condition: If the objective function is strictly concave in the choice
variable:

∂2

∂c2
[u(c) + βV

(
(1 + r)a + y − c

)
] < 0

Then the policy function c∗(a) is unique.

Solution: Use strictly concave utility



Analytical Solution: Guess and Verify

The guess and verify method (also called the “method of undetermined coefficients”)
is an analytical technique for solving dynamic programming problems where you:

1. Guess the functional form of the value function based on economic intuition

2. Substitute this guess into the Bellman equation

3. Solve for the unknown parameters/coefficients

4. Verify that your solution satisfies all the necessary conditions



Log Utility Specification
Assume log utility: u(c) = ln(c)
Properties:

I u′(c) = 1
c (marginal utility)

I u′′(c) = − 1
c2

(diminishing marginal utility)

Euler equation becomes:
1

ct
= β(1 + r)

1

ct+1

Therefore:
ct+1 = β(1 + r)ct

Consumption growth:

I If β(1 + r) = 1: ct+1 = ct (constant consumption)

I If β(1 + r) > 1: ct+1 > ct (growing consumption)

I If β(1 + r) < 1: ct+1 < ct (declining consumption)



1. Guess: Linear Value Function
Educated guess: Try value function of the form

V (a) = A ln(a + B)

where A > 0 and B > 0 are constants to be determined.

Why this form?

I Log utility suggests log value function

I (a + B) shifts the argument to handle potentially negative assets

I Linear in logs preserves analytical tractability

Marginal value of wealth:

V ′(a) =
A

a + B

Properties we expect:

I V ′(a) > 0 (more assets are better): requires A > 0

I V ′′(a) < 0 (diminishing returns): V ′′(a) = − A
(a+B)2

< 0



2. Substituting into Bellman Equation

Substitute guess into Bellman equation:

A ln(a + B) = max
c
{ln(c) + βA ln((1 + r)a + y − c + B)}

First-order condition:
1

c
=

βA

(1 + r)a + y − c + B

Solving for c :

c =
(1 + r)a + y + B

1 + βA

This gives us the policy function candidate:

c∗(a) =
(1 + r)a + y + B

1 + βA

Economic interpretation: Consumption is linear in“total wealth” (1 + r)a + y + B.



3. Determine Constants A and B

Substitute optimal consumption back into Bellman equation and match coefficients.
After substituting c∗(a) and simplifying:

A ln(a + B) = ln

(
(1 + r)a + y + B

1 + βA

)
+ βA ln

(
βA((1 + r)a + y + B)

1 + βA

)

For this to hold for all a, we need: (see extra notes for derivation)

A =
1

1− β

B =
y

r



Final Value and Policy Functions

Value function:

V (a) =
1

1− β
ln
(
a +

y

r

)
Policy function:

c∗(a) =
(1 + r)a + y + y

r

1 + β
1−β

=
(1 + r)a + y(1 + 1

r )
1

1−β

Simplifying:

c∗(a) = (1− β)(1 + r)
[
a +

y

r

]



Economic Interpretation of the Solution

Total wealth concept:

Total wealth = a +
y

r
= financial assets + human wealth

Consumption rule:
c∗ = (1− β)(1 + r)× total wealth

Key insights:

I Agent consumes fixed fraction of total wealth each period

I Higher patience (β closer to 1) ⇒ lower consumption rate

I Higher interest rate ⇒ higher consumption rate

I Consumption depends on both financial and human wealth



Guess and Verify: Strengths and Limitations

Strengths:

I Exact solutions: No approximation error

I Economic insight: Clear parameter relationships

I Analytical results: Closed-form comparative statics

I Fast evaluation: No iterative computation needed t

Limitations:

I Very restrictive: Only works for special utility/technology

I Guess quality: Success depends on making good initial guess

I Limited scope: Can’t handle general constraints or uncertainty easily

I Algebraic complexity: Can become very tedious

I No general method: Each problem requires fresh approach



Value Function Iteration

Value Function Iteration (VFI) is a numerical algorithm for solving dynamic
programming problems by repeatedly applying the Bellman operator until convergence.

Main Advantages:

I General applicability - works for any well-posed dynamic programing problems

I Guaranteed convergence - mathematical certainty it will work

I Handles complexity - constraints, uncertainty, multiple state variables

Main Disadvantages:

I Computational cost - can be slow for large problems

I Approximation error - discretization introduces errors

I Curse of dimensionality - exponential growth with state variables



Basic Algorithm

1. Discretize state space: Create grid {a1, a2, . . . , aJ} where
a = a1 < a2 < · · · < aJ

2. Initial guess: Choose V 0(aj) for all grid points

3. Iterate: For j = 0, 1, 2, . . .:

V n+1(aj) = max
c
{ln(c) + βV n((1 + r)aj + y − c)}

subject to: c > 0 and (1 + r)aj + y − c ≥ a

4. Store policy: cn+1(aj) = arg max of above

5. Check convergence: If ‖V n+1 − V n‖ < tolerance, stop

6. Output: V ∗(a) and c∗(a)



Complete Algorithm

Algorithm 1 Basic VFI

1: Initialize: Grid A = {a1, a2, . . . , aJ}, Guess V 0(aj), set tolerance
2: Set n = 0
3: repeat
4: Calculate consumption at aj and each a′j : c = max((1 + r)aj + y −A, 0)

5: Find Maximum: [V 1(j),max idx ] = max(log(c) + βV 0)
6: Store Asset Policy: ga(j) = A(max idx)
7: Store Consumption Policy: gc(j) = (1 + r)a(j) + y − ga(j)
8: Check convergence: max(|V 1 − V 0|) < tol
9: Update: V 0 = V 1

10: n = n + 1
11: until convergence
12: Return: value functions, policy functions


