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Review and Today

Last time
P solved a simple consumption-savings problem
> set initial wealth that agents consume over a finite period
» consumption path depends on patients vs interest rate
Today
> move to infinite horizon
P> agents receive income each period

» how to solve models



Why Infinite Horizon

Why finite horizon is often unrealistic:
» Real people don't know their exact death date

» Many economic decisions (career choices, education, homeownership) are made as
if life continues indefinitely

» Finite horizon models often produce unrealistic “end effects” where behavior
changes dramatically near the terminal date

Examples where infinite horizon is more appropriate:

» Household savings decisions: Families plan for retirement, children’s education,
emergencies without a fixed endpoint

» Corporate investment: Firms make long-term investments assuming they'll
operate indefinitely

» Government policy: Social security, infrastructure decisions are made with very
long time horizons



Steady-State Analysis Becomes Relevant

What steady state means:

» A point where key variables (consumption, assets, income) stop changing on
average. The economy’s "long-run equilibrium” where temporary shocks have

died out.

Why this matters economically:
» Policy analysis: We can study long-run effects of policy changes (tax rates, social
security systems)

» Comparative statics: How do permanent changes in parameters (interest rates,
productivity) affect long-run outcomes?

» Stability analysis: Does the economy return to steady state after shocks?

Example: If the government permanently increases unemployment benefits,
steady-state analysis tells us the new long-run level of precautionary savings.



Transversality Conditions Replace Terminal Conditions

What transversality conditions are:

> Mathematical conditions that prevent “explosive” solutions where variables grow
without bound.

Why this matters:

» Finite horizon: Terminal condition a7 > 0 is arbitrary - why exactly zero assets at
death?

» Infinite horizon: Transversality emerges naturally from optimization - no arbitrary
assumptions needed

Mathematical necessity:
» Without this condition, the optimization problem may not have a unique solution

> Prevents agents from achieving infinite utility through infinite borrowing



The Infinite Horizon Problem

Agent: Lives forever, receives income each period, chooses consumption and savings
Objective: Maximize lifetime utility

maxZﬂtu(ct)
t=0

Constraints:
» Budget constraint: a;y1 = (1+r)ar +y: — ¢t
» Non-negativity: ¢; > 0
» Borrowing limit: a; > a (natural borrowing limit)
» Transversality condition:

tlrgo BtUI(Ct)at =0

Parameters:
» (3 € (0,1): discount factor
» r > 0: interest rate (constant)
» y;: per-period income (may be stochastic)
» u(-): utility function (increasing, concave)



Key Features and Economic Interpretation

Constant income stream:
» Simplest case of income uncertainty: no uncertainty!

» Agent receives y every period forever

Natural borrowing limit:

Interpretation: Maximum debt sustainable with constant income

Economic applications:
» Government bonds: Country with stable tax revenue
» Pension planning: Retiree with fixed pension income

> Trust funds: Beneficiary receiving constant payments



Transversality Condition: Mathematical Intuition

The condition lim¢_, '¢/(ct)ar = 0 means:

If a; > 0 (positive wealth):

» J(c¢t) > 0ast— oo

» Marginal utility approaches zero

P> Agent eventually becomes “rich enough” that extra wealth doesn’'t matter
If a; < 0 (debt):

> When a; < 0, condition becomes a constraint on debt growth

» Reveals fundamental limits on borrowing behavior

» Debt cannot grow faster than rate % -1

> Prevents explosive debt paths

>

Forces eventual debt repayment



Breaking Down the Condition for Debt

When agent has debt (a; < 0), the transversality condition becomes:

tllmo Bt (ct)ar =0

Since marginal utility is always positive (¢/(¢;) > 0), we need:

lim ffa; =0
t—00
Debt a; must grow slower than 3¢

1 t
a; grows slower than <ﬁ>

Define subjective discount rate: p = % -1

Key result: | Debt cannot grow faster than rate p per period ‘




Maximum Debt Growth Rate

Economic interpretation:
» p: subjective discount rate (measures impatience)
» Higher p (more impatient) = can sustain faster debt growth
» Lower p (more patient) = must limit debt growth

Examples:
» 3 =0.95= p=>5.26%: Debt can grow at most 5.26% per year
» 3=0.99 = p=1.01%: Debt can grow at most 1.01% per year
» 3=10.90 = p=11.11%: Debt can grow at most 11.11% per year



The Role of Patience

Impatient agents (low 3, high p):
» Care little about future consumption
» High subjective discount rate allows more debt accumulation
» Can sustain borrowing even at moderately high interest rates

» Economic logic: “"Don’t mind debt growing fast since future doesn't matter much”

Patient agents (high 3, low p):
» Care significantly about future consumption
» Low subjective discount rate severely limits debt accumulation
» Cannot sustain borrowing at high interest rates

» Economic logic: “Must be careful about debt since future matters a lot”

Paradox: More patient people are more constrained in their borrowing ability!



Bellman Equation

Since income is constant, the value function depends only on current assets:
V(a) = max {u(c)+ 8V (d
(a) 62073/2{ (c) +BV(a)}
subject to:
a=1+ra+y—c
State variable: Current assets a
Choice variable: Current consumption ¢, next period assets a’

» can reduce to only ¢ by substituting in the budge constraint

Key features:
» Time-invariant problem (stationary environment)
» Value function V/(a) independent of time

» Policy function c*(a) also time-invariant



First-Order Conditions

Interior solution requires:
u'(c)=BV((1+r)a+y—c)
Envelope theorem:
V'(a) = B(L+r)V'((1+r)a+y—c*(a))
where ¢*(a) is the optimal consumption policy. Then the envelope condition gives us:
V(&) = (1+ r)d(c)

Combining FOC and envelope condition:

d(c) = B(L+ )i/ (C)

Key insight: Even with constant income, optimal consumption may not be constant -
depends on relationship between §(1 + r) and 1.



Solving Dynamic Programing Problems

What does a solution look like?

> the solution is a set of functions, not a single point
» policy function: how much to consume for a given level of assets

» value function: discounted utility of all future consumption given a level of assets
Three ways to solve

» Guess and Verify (analytical)
» Value function iteration (numerical approximation)

» Policy function iteration (numerical approximation)

Before we discuss how to solve we will discuss when we have a unique solution



What Do We Mean by “Unique Solution”?

1. Value Function Uniqueness:
» |s there a unique V*(x) satisfying the Bellman equation?

> Most fundamental type of uniqueness

2. Policy Function Uniqueness:
» |s there a unique optimal policy 7*(x) for each state x?

» Can have unique value function but multiple optimal policies

3. Optimal Path Uniqueness:
> Starting from xg, is the sequence {x;:}2°, unique?

» Depends on both value and policy uniqueness



Why Does Uniqueness Matter?
Theoretical importance:
» Well-defined economic models require unique predictions
» Comparative statics analysis needs deterministic responses
» Welfare analysis requires unambiguous optimal policies

Computational implications:
» Numerical algorithms must converge to same solution
> Starting points shouldn't affect final answer
» Error bounds and convergence rates are meaningful

Policy applications:
» Government policies should have predictable effects
» Firms need unique optimal strategies
» Households should have clear decision rules

When uniqueness fails: Multiple equilibria, coordination problems, model
indeterminacy.



Mathematical Foundations: Metric Spaces

Metric Space: A set X with distance function d : X x X — R*
Properties of distance function:

1. d(x,y) > 0and d(x,y) =0 <= x =y (non-negativity and identity)
2. d(x,y) = d(y,x) (symmetry)
3. d(x,z) < d(x,y)+ d(y, z) (triangle inequality)

Example for Dynamic Programing: Space of bounded continuous functions with
supremum norm:

d(Vi, Vo) = |Vi = Valloo = SU§|V1(X) — Va(x)|

X€

This gives us the mathematical framework for analyzing value functions.



Contraction Mappings

Definition: A mapping T : X — X is a contraction if there exists « € [0, 1) such that:
d(T(X),T(y))SO&d(X,y) VXa}/EX
The constant « is called the contraction factor.

Intuition: Contraction mappings bring points closer together
> Take any two points x and y
» After applying T, distance between T(x) and T(y) is smaller

» Factor o < 1 means strict contraction
Key property: If a < 1, repeated application of T makes points converge:

d(T"(x), T"(y)) < a"d(x,y) - 0as n— o0



The Contraction Mapping Theorem (Banach Fixed Point Theorem)

Theorem: Let (X, d) be a complete metric space and T : X — X be a contraction
mapping with factor a € [0,1). Then:

1. Existence and Uniqueness:

JIx* € X such that T(x*) = x*

2. Global Convergence:

Vxo € X, the sequence x,+1 = T(xp) converges to x*

3. Rate of Convergence:
d(xn,x*) < a"d(xo, x™)

Simple Interpretation: No matter where you start, repeated application of T leads to
the same unique fixed point.



The Bellman Operator

Consider the dynamic programming problem:

V(@) = max {u(c) + BV((1+r)a+y —c)]

Define the Bellman operator T:

T(V)(a) = max {u(c) + V(1 +Naty—c)}

Value function iteration: V"1 = T(V")
Fixed point: True value function V* satisfies V* = T(V*)

Goal: Show that T is a contraction mapping under appropriate conditions.



When is the Bellman Operator a Contraction?
Theorem: Under the following conditions, T is a contraction with factor 5:

1. Discount factor: § € (0,1)

2. Bounded rewards: sup_|u(c)| < oo

3. Compact choice sets: A(a) is compact for all a
4. Continuity: u(c) is continuous

Contraction property:

[T(V1) = T(V2)lloo < BlIV1 — V2|l

Implications:
» Unique value function V* exists
» Value function iteration converges to V*

» Convergence rate is geometric with factor (8



Parameter Restrictions for Uniqueness

1. Discount Factor:
» 3 € (0,1): Ensures contraction and unique value function
> 3 = 1. May lead to non-uniqueness or non-existence

» 5 > 1: Generally explosive, non-convergent behavior

2. Interest Rates:
» 3(1+ r) = 1: May create continuum of optimal consumption paths

» 5(1+ r) # 1: Generally ensures unique consumption dynamics

3. Technology Parameters:
» Production elasticity a € (0,1): Ensures diminishing returns
> Risk aversion o > 0: Ensures strict concavity of utility

> Avoid “knife-edge” parameter values that create indifference



Constraint Structure and Uniqueness

1. Compact Choice Sets:
» Non-compact sets may lead to no optimal solution
» Example: ¢ € [0,00) vs. ¢ € [0,(1+ r)a+y]

2. Interior Solutions:
» When optimal choices are interior, first-order conditions determine unique solution
» Corner solutions may create multiple optima

» Inada conditions help ensure interior solutions

3. Continuous Constraint Correspondence:
» A(a) should vary continuously with state a
» Discontinuous constraints can create multiple local optima

» Example: Borrowing limits that depend smoothly on income



Example: Linear Utility

Example: Consumption-savings with linear utility u(c) = ¢, assume 5 < 1

Bellman equation:

V(a) = Crgj(); {c+pV((1+r)at+y—c)}

A(a) =10,(1+ r)a+y]

Lets check conditions for a contraction:

1. Discount factor: 3 € (0,1)

2. Bounded rewards: sup_|u(c)| < oo v (true in the choice set)
3. Compact choice sets: A(a) is compact for all a

4. Continuity: u(c) is continuous

Result: the bellman equation for the simple consumption-savings problem with linear
utility is a contraction — there exits a unique value function V*(a)



Linear Utility: The Indifference Problem

Bellman equation:

V(a) = max {c+pV(1+r)at+y—c)}
ceA(a)
A(a) =1[0,(1+r)a+y]
When 5(1+r) =1:
» Agent is indifferent between consuming today vs. tomorrow
» Any consumption path satisfying budget constraint is optimal
» Value function is unique, but policy function is not

Euler equation: 1 = (1 + r) =1 (always satisfied)
Economic interpretation: No diminishing marginal utility means no incentive to
smooth consumption.

Unique value function doesn’t guarantee unique policy!



Strict Concavity and Policy Uniqueness

Strict Concavity Condition: If the objective function is strictly concave in the choice
variable:

82
@[u(c) +B8V((L+r)a+y—c)]<0
Then the policy function c*(a) is unique.

Solution: Use strictly concave utility



Analytical Solution: Guess and Verify

The guess and verify method (also called the “method of undetermined coefficients”)
is an analytical technique for solving dynamic programming problems where you:

1. Guess the functional form of the value function based on economic intuition
2. Substitute this guess into the Bellman equation

3. Solve for the unknown parameters/coefficients
4

. Verify that your solution satisfies all the necessary conditions



Log Utility Specification
Assume log utility: u(c) =In(c)

Properties:
_ 1 . ..
» u'(c) = < (marginal utility)
> u"(c) = —% (diminishing marginal utility)
Euler equation becomes:
1
—=0(1+r)
Ct Ct+1

Therefore:
cty1 = B+ r)c

Consumption growth:
» If B(1+r)=1: ct41 = ¢t (constant consumption)
> If 3(14r) > 1: ¢ty1 > ¢ (growing consumption)
» If B(1+r) <1: cr41 < ¢t (declining consumption)



1. Guess: Linear Value Function
Educated guess: Try value function of the form
V(a) = Aln(a+ B)
where A > 0 and B > 0 are constants to be determined.

Why this form?
» Log utility suggests log value function

» (a+ B) shifts the argument to handle potentially negative assets
P Linear in logs preserves analytical tractability

Marginal value of wealth:

Properties we expect:

» V/(a) > 0 (more assets are better): requires A > 0

» V”(a) < 0 (diminishing returns): V"(a) = —ﬁ <0



2. Substituting into Bellman Equation

Substitute guess into Bellman equation:
Aln(a+ B) = max{In(c) + SAIn((1 +r)a+y — c+ B)}
First-order condition:

1_ PA
c (l+r)aty—-c+B

Solving for c:
(I+r)a+y+8B
1+ 5A

C =

This gives us the policy function candidate:

(1+r)at+y+B

c’(a) = 1+ A

Economic interpretation: Consumption is linear in“total wealth” (1+ r)a+y + B.



3. Determine Constants A and B

Substitute optimal consumption back into Bellman equation and match coefficients
After substituting c*(a) and simplifying:

B (I4+r)a+y+B BA((L+r)a+y+ B)
AIn(a—i—B)—In( 11 A )—i—ﬁAIn( 11 6A )

For this to hold for all a, we need: (see extra notes for derivation)

1
=15

B =

A

RIS



Final Value and Policy Functions

Value function: 1

Policy function:

Simplifying:



Economic Interpretation of the Solution

Total wealth concept:

Total wealth = a + LA financial assets 4+ human wealth
r

Consumption rule:
¢ =(1—-B)(1+ r) x total wealth

Key insights:
> Agent consumes fixed fraction of total wealth each period
» Higher patience (3 closer to 1) = lower consumption rate
» Higher interest rate = higher consumption rate

» Consumption depends on both financial and human wealth



Guess and Verify: Strengths and Limitations

Strengths:
> Exact solutions: No approximation error
» Economic insight: Clear parameter relationships
» Analytical results: Closed-form comparative statics

> Fast evaluation: No iterative computation needed t

Limitations:
» Very restrictive: Only works for special utility/technology
» Guess quality: Success depends on making good initial guess
> Limited scope: Can’t handle general constraints or uncertainty easily
> Algebraic complexity: Can become very tedious
>

No general method: Each problem requires fresh approach



Value Function lteration

Value Function lteration (VFI) is a numerical algorithm for solving dynamic
programming problems by repeatedly applying the Bellman operator until convergence.

Main Advantages:
» General applicability - works for any well-posed dynamic programing problems

» Guaranteed convergence - mathematical certainty it will work

» Handles complexity - constraints, uncertainty, multiple state variables
Main Disadvantages:

» Computational cost - can be slow for large problems
P Approximation error - discretization introduces errors

» Curse of dimensionality - exponential growth with state variables



Basic Algorithm

1. Discretize state space: Create grid {a1, a2,...,a,} where
a=ar<a<---<ay

2. Initial guess: Choose V°(a;) for all grid points

3. Iterate: For j =0,1,2,...

V™ (a5) = max {Inc) + BV"((1+ )aj +y — )}

subject to: ¢ >0and (1+r)aj+y—c>a
4. Store policy: c"1(a;) = arg max of above
5. Check convergence: If ||V"*1 — V"|| < tolerance, stop
6. Output: V*(a) and c*(a)



Complete Algorithm

Algorithm 1 Basic VFI

1: Initialize: Grid A = {a1,a2,...,a,}, Guess V°(a;), set tolerance

2: Set n=0

3: repeat

4. Calculate consumption at a; and each aj: ¢ = max((1+ r)aj +y — A,0)
5. Find Maximum: [V1(}), max_idx] = max(log(c) + BV?)

6:  Store Asset Policy: g,(j) = A(max_idx)

7: Store Consumption Policy: g.(j) = (1 + r)a(j) + y — ga())

8:  Check convergence: max(|V! — V?|) < tol

9.  Update: V0= V1

10:. n=n+1
11: until convergence
12: Return: value functions, policy functions




