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Overview

Last lecture: Partial equilibrium analysis

I Consumption-savings with exogenous income and interest rate

I Agent takes y and r as given

I Optimal consumption: c∗(a) = (1− β)(1 + r)(a + y
r )

Today: General equilibrium analysis

I Endogenous income and returns through capital accumulation

I Agent chooses consumption and investment

I Output produced using accumulated capital

I Interest rate determined by marginal product of capital

Key insight: Saving today increases tomorrow’s productive capacity, affecting both
future income and returns to saving.



Ramsey-Cass-Koopmans Model

Key features:

I Infinite-horizon representative agent

I Endogenous capital accumulation

I Neoclassical production function

I Perfect competition and market clearing

I No uncertainty (deterministic environment)

Central questions:

I How much should society save vs. consume?

I What determines long-run capital stock and consumption?

I How does the economy transition to long-run equilibrium?

I What factors affect growth and accumulation?

Applications: Optimal growth, fiscal policy, development economics



Historical Context
Frank Ramsey (1928): “A Mathematical Theory of Saving”

I Normative question: How much should a nation save?

I Mathematical framework for optimal saving

I Foundation of modern growth theory

David Cass (1965) & Tjalling Koopmans (1965):

I Rigorous infinite-horizon dynamic programming approach

I Competitive equilibrium interpretation

I Decentralization results

Modern relevance:

I Benchmark model in macroeconomics

I Foundation for DSGE models

I Policy analysis framework

I Understanding long-run growth patterns



The Economic Environment
Representative agent lives forever and chooses consumption and investment.

Preferences:

U =
∞∑
t=0

βtu(ct)

I ct : consumption at time t

I β ∈ (0, 1): discount factor

I u(·): period utility function (increasing, concave)

Technology:
yt = f (kt)

I yt : output at time t

I kt : capital stock at time t

I f (·): production function (increasing, concave)

Note: Labor is exogenous and normalized to 1, so f (kt) represents output per worker.



Technology Assumptions
Neoclassical production function y = f (k) satisfies:

1. Positive and diminishing marginal product:

f ′(k) > 0, f ′′(k) < 0

2. Inada conditions:
lim
k→0

f ′(k) =∞, lim
k→∞

f ′(k) = 0

3. Standard normalization:
f (0) = 0

Economic interpretation:

I More capital increases output but at diminishing rate

I Very low capital has very high marginal productivity

I Very high capital has very low marginal productivity

I Ensures interior solutions and convergence



Capital Accumulation
Law of motion for capital:

kt+1 = (1− δ)kt + it

where:

I it : gross investment at time t

I δ ∈ (0, 1): depreciation rate

I (1− δ)kt : undepreciated capital from period t

Resource constraint:
ct + it = f (kt)

Output can be either consumed or invested (no waste).

Combining these:
kt+1 = (1− δ)kt + f (kt)− ct

Economic interpretation: Today’s consumption choice determines tomorrow’s capital
stock, which affects future productive capacity.



Representative Household Problem

max
{ct ,kt+1}∞0

∞∑
t=0

βtu(ct)

subject to:

ct + kt+1 = rtkt + (1− δ)kt ∀t (1)

k0 given (2)

lim
t→∞

βtu′(ct)kt = 0 (transversality) (3)

Budget Constraint:

I agents own the capital and get a return each period

I agent income (rtkt) must equal consumption and investment (ct + it)

I replacing it with the law of motion of capital gives (1)



Representative Firm Problem

Each period the firm maximizes profits taking price (rt) as given

πt = max
kd
t

f (kdt )− rtk
d
t

where kdt is capital demand.



Equilibrium vs. Optimum

Optimum: The best possible outcome according to some criterion (usually
maximizing welfare or utility)
I Perspective: Normative - what should happen
I Determined by: A social planner who can control all variables
I Criterion: Usually maximizes total social welfare
I Single optimization problem

Equilibrium: A state where no agent has an incentive to unilaterally change their
behavior
I Perspective: Positive - what will happen given how agents actually behave
I Determined by: Individual optimization by all agents simultaneously
I Criterion: Each agent maximizes their own objective, taking others’ actions as

given
I Multiple optimization problems (households, firms)

First Welfare Theorem: Under perfect competition and standard assumptions,
competitive equilibrium equals social optimum.



Defining Economic Equilibrium
General definition: An equilibrium is a state where all economic agents optimize
given their constraints, and all markets clear.

Key components:

1. Individual optimization: Each agent chooses actions to maximize their objective

2. Market clearing: Supply equals demand in all markets

3. Consistency: Agents’ beliefs about prices and others’ actions are correct

4. No incentive to deviate: Given equilibrium prices and others’ actions, no agent
wants to change their behavior

In the Ramsey model context:

I Households maximize utility subject to budget constraints

I Firms maximize profits subject to technology constraints

I Capital and goods markets clear

I Price expectations are fulfilled



Equilibrium Concepts

Sequential Market Equilibrium: An equilibrium where there’s a complete set of
markets for goods at every date (and state), all trading occurs at time 0, and prices
clear all markets simultaneously.

I outlines a set of prices and allocations that result from agent optimization and
market clearing

I think Lagrangian Method from first lecture

Recursive Equilibrium: An equilibrium characterized by time-invariant policy
functions and value functions, where current decisions depend only on current state
variables (not the entire history).

I outlines functions (value, policy, pricing) that result from agent optimization and
market clearing

I think dynamic program from first lecture



Sequential Markets: Basic Setup

Market structure: Markets open sequentially over time, one period at a time.

At each date t:

I Capital rental market opens with price rt
I Goods market opens with price pt = 1 (numeraire)

I Agents trade based on current information

I Markets close, time moves to t + 1

Key features:

I Spot markets only: No trading of future delivery contracts

I Sequential decision-making: Agents decide period by period

I Price-taking behavior: Agents take current prices as given

I Perfect foresight: Agents correctly anticipate future prices



Sequential Markets

Household’s first-order condition:

u′(ct) = βu′(ct+1)[1− δ + rt+1]

Firm’s first-order condition:
rt = f ′(kt)

Combine to get the Euler equation

u′(ct) = βu′(ct+1)[1− δ + f ′(kt+1)]

which tells us the rate at which consumption changes given f ′(kt+1). So we also need
to know how capital changes and an initial condition k0. Combining the law of motion
of capital and the resource constraints gives us

kt+1 = (1− δ)kt + f (kt)− ct



Sequential Markets: Equilibrium Definition

A Sequential Markets Equilibrium is a sequence of:

I Allocations: {ct , kt+1, k
d
t }∞t=0

I Prices: {rt}∞t=0

such that:

1. Household optimization: {ct , kt+1} solves household’s problem

2. Firm optimization: kdt solves firm’s problem each period

3. Capital market clearing: kdt = kt for all t

4. Goods market clearing: ct + it = f (kt) for all t

Challenge: Agents must have perfect foresight about future prices {rs}∞s=t+1 to solve
their optimization problems at date t.



Motivation for Recursive Approach

Challenges with sequential markets:

I Agents need to predict infinite sequence of future prices

I Computationally complex: infinite-dimensional price space

I Difficult to analyze stability and uniqueness

I Hard to compute numerically

Recursive approach solution:

I Express everything in terms of current state variables

I Prices depend only on current aggregate state

I Reduces infinite-dimensional problem to finite-dimensional

I Enables dynamic programming techniques

Key idea: Prices can be expressed as functions of current state rather than time.
State variable in Ramsey model: Current aggregate capital stock Kt .



Recursive Equilibrium: Setup

Aggregate state: K (per-capita capital since population normalized to 1)
Price functions:

I Rental rate: r(K )

Aggregate law of motion:
K ′ = G (K )

where G (·) is the aggregate policy function to be determined in equilibrium.

Individual state: Current capital holdings k
Individual problem: Given aggregate state K and law of motion K ′ = G (K ):

V (k ,K ) = max
c,k ′

{
u(c) + βV (k ′,G (K ))

}
subject to: c + k ′ = r(K )k + (1− δ)k



Recursive Equilibrium: Individual Optimization

Individual policy functions: c = gc(k,K ) and k ′ = gk(k,K )
First-order conditions:

u′(gc(k ,K )) = βVk(gk(k,K ),G (K ))

Envelope condition:

Vk(k ,K ) = u′(gc(k,K ))[r(K ) + 1− δ]

Combining:

u′(gc(k ,K )) = β[r(G (K )) + 1− δ]u′(gc(gk(k,K ),G (K )))

u′(c) = β[r(G (K )) + 1− δ]u′(c ′)

Note: Individual takes aggregate law of motion G (K ) as given.



Recursive Equilibrium: Consistency Conditions

Representative agent assumption: Individual capital equals aggregate capital
supplied: k = K .

Market clearing in capital market:

r(K ) = f ′(K )⇒ K = Kd

Market clearing in goods market:

gc(K ,K ) + gk(K ,K ) = f (K ) + (1− δ)K

Consistency of aggregate law of motion:

G (K ) = gk(K ,K )

Key insight: Aggregate behavior must be consistent with individual optimization.



Recursive Competitive Equilibrium: Definition

A Recursive Competitive Equilibrium consists of:

I Value function: V (k,K )

I Policy functions: gc(k ,K ), gk(k ,K )

I Price functions: r(K )

I Aggregate law of motion: G (K )

such that:

1. Individual optimization: Given (r(K ),w(K ),G (K )), the value and policy
functions solve the individual’s dynamic programming problem

2. Market clearing: r(K ) = f ′(K )

3. Consistency: G (K ) = gk(K ,K )



Equivalence of the Two Approaches

Fundamental result: Under standard assumptions, sequential markets equilibrium and
recursive competitive equilibrium yield identical allocations.

Why they’re equivalent:

I Both implement the same first-order conditions

I Both satisfy the same market clearing conditions

I Both respect the same resource constraints

I Representative agent framework eliminates distributional issues

Mathematical equivalence:

I Sequential: u′(ct) = βu′(ct+1)[1− δ + f ′(kt+1)]

I Recursive: u′(c) = βu′(c ′)[1− δ + f ′(k ′)] where c ′ = gc(k ′, k ′)

Both lead to: kt+1 = (1− δ)kt + f (kt)− ct with same Euler equation.



Taking Stock

So far we have discussed

I given an initial capital stock k0, sequential markets approach gives optimal
consumption path

I recursive approach gives a consumption policy function which we can use to
determine optimal consumption at any capital level

I given the same initial capital stock k0, both approaches give the same answer

Now let’s think about

I how capital changes over time, i.e. growing or shrinking?

I are there any cases where capital is not changing?

I how does the initial capital stock k0 affect the dynamics?



Dynamics of the model

To understand the dynamics, we analyze the system:

kt+1 = (1− δ)kt + f (kt)− ct (4)

u′(ct) = βu′(ct+1)[1− δ + f ′(kt+1)] (5)

Steady State: A point in the system where all endogenous variables, (k, c), are
constant over time.

Phase diagram: plot which shows all possible paths in (k , c) space and which ones
lead to steady state.



Types of Steady States

1. Stable steady state:

I Small perturbations lead back to steady state

I Attracting in the dynamics

2. Unstable steady state:

I Small perturbations lead away from steady state

I Repelling in the dynamics

3. Saddle point steady state:

I Stable in some dimensions, unstable in others

I Unique convergent path (saddle path)

In Ramsey model: Steady state is saddle point stable with unique convergent path.



Steady State

In steady state:

kt+1 = kt = k∗ (constant capital) (6)

ct+1 = ct = c∗ (constant consumption) (7)

f ′(k∗) = r∗ (constant marginal product) (8)

Golden Rule Question
“What level of capital maximizes steady-state consumption per capita?”

Modified Golden Rule Question
“What level of capital do optimizing agents actually choose?”



The Golden Rule

Objective: Maximize steady-state consumption

In steady state kt = kt+1 = k , so from the capital accumulation equation (6) we get

max c = f (k)− δk

First-Order Condition
dc

dk
= f ′(k)− δ = 0

Golden Rule Condition
f ′(kGR) = δ

Economic intuition: Balance marginal output against marginal investment needs



The Modified Golden Rule (Ramsey Rule)

Objective: Maximize discounted lifetime utility

Note: The consumption level needed to do this comes from the Euler equation.

From the Euler equation:

u′(c∗) = βu′(c∗)[1− δ + f ′(k∗)]

Since u′(c∗) > 0, we can divide both sides:

1 = β[1− δ + f ′(k∗)]

Solving for marginal product:

f ′(k∗) =
1

β
− (1− δ) =

1− β
β

+ δ



The Modified Golden Rule (Ramsey Rule)

The steady-state condition:

f ′(k∗) =
1− β
β

+ δ

can be rewritten as:
f ′(k∗) = ρ+ δ

where ρ = 1−β
β is the subjective discount rate.

Economic interpretation:

I f ′(k∗): marginal product of capital

I ρ+ δ: “required return” on capital

Key relationship: Since ρ > 0, we have f ′(k∗) > f ′(kGR), which implies k∗ < kGR (by
diminishing returns).

Economic intuition: Impatience (ρ) makes agents save less than Golden Rule



Steady-State Consumption
Once we know k∗, steady-state consumption follows from resource constraint:

c∗ + i∗ = f (k∗)

In steady state, investment just replaces depreciated capital:

k∗ = (1− δ)k∗ + i∗ ⇒ i∗ = δk∗

Therefore:
c∗ = f (k∗)− δk∗

Economic interpretation:

I Output: f (k∗)

I Replacement investment: δk∗

I Available for consumption: f (k∗)− δk∗

Key insight: Higher steady-state capital doesn’t always mean higher consumption due
to depreciation costs!



The Phase Diagram

A phase diagram is a graphical representation of the state space of a dynamic system
that shows:

I The direction of movement from any given state

I Equilibrium points and their stability properties

I Trajectories showing how the system evolves over time

They system:

kt+1 = (1− δ)kt + f (kt)− ct

u′(ct) = βu′(ct+1)[1− δ + f ′(kt+1)]

For phase diagram, define:

I k̇ = kt+1 − kt = f (kt)− δkt − ct
I ċ = ct+1 − ct (determined by Euler equation)



The k̇ = 0 Locus

k̇ = 0 ⇒ c = f (k)− δk

At low k: f ′(k) > n + δ (by Inada conditions)

I So c ′ = f ′(k)− (n + δ) > 0

I Locus is upward sloping

At high k: f ′(k) < n + δ (diminishing returns)

I So c ′ = f ′(k)− (n + δ) < 0

I Locus is downward sloping

At some intermediate kGR : f ′(kGR) = n + δ

I So c ′(kGR) = 0

I This is the peak (Golden Rule capital stock!)

Dynamics

I Above locus: c > f (k)− δk ⇒ ∆k < 0 (capital falls)

I Below locus: c < f (k)− δk ⇒ ∆k > 0 (capital rises)



Phase Diagram: Ramsey Model Dynamics

k
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kGR



The ċ = 0 Locus

Consumption is constant when:

ct+1 = ct

From Euler equation, this requires:

1 = β[1− δ + f ′(k)]

f ′(k) = ρ+ δ

Properties:

I Vertical line at k∗ where f ′(k∗) = ρ+ δ

I Independent of consumption level

I Left of line: f ′(k) > ρ+ δ ⇒ ∆c > 0 (consumption rises)

I Right of line: f ′(k) < ρ+ δ ⇒ ∆c < 0 (consumption falls)



Phase Diagram: Ramsey Model Dynamics
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Phase Diagram Regions and Saddle Path

Four regions with different dynamics:

I Region I: k < k∗, high c → ∆k < 0, ∆c > 0

I Region II: k > k∗, high c → ∆k < 0, ∆c < 0

I Region III: k < k∗, low c → ∆k > 0, ∆c > 0

I Region IV: k > k∗, low c → ∆k > 0, ∆c < 0

A saddle path (or stable manifold) is the unique trajectory that approaches a saddle
point equilibrium as time goes to infinity.



Saddle Path Stability

Key insight: Most initial conditions lead away from steady state!

Saddle path properties:

I Unique stable manifold leading to (k∗, c∗)

I Given any initial k0, there’s exactly one c0 that leads to steady state

I All other initial consumption levels lead to explosive paths

Economic interpretation:

I Too high initial c: Insufficient saving → capital declines → economy collapses

I Too low initial c: Excessive saving → capital explodes → violates transversality

I Saddle path c: ”Just right” balance between current and future consumption

Policy implication: Forward-looking agents must choose initial consumption optimally
to avoid unstable paths.



Multiple Steady States
Can there be multiple steady states?
In the basic Ramsey model: NO
I Condition f ′(k∗) = ρ+ δ has unique solution
I Strict concavity of f ensures uniqueness
I Inada conditions guarantee interior solution

Extensions with multiple steady states:
I Threshold effects: Different production technologies for different capital ranges
I External effects: f (k,K ) where K is aggregate capital
I Non-convexities: Fixed costs or increasing returns to scale
I Multiple sectors: Different technologies across sectors

Policy implications:
I Multiple steady states → History matters
I Policy interventions can switch between steady states
I ”Big push” theories of development



Two Approaches to Solving Dynamic Models

The Question: How do we numerically solve the Ramsey model to find optimal
consumption and capital paths?

Two Main Approaches:

1. Value Function Iteration (VFI)
I Solves Bellman equation recursively
I Finds policy function c = g(k)

2. Shooting Algorithm
I Solves differential equations with boundary conditions
I Finds specific trajectory {c(t), k(t)}



Value Function Iteration for Ramsey Model
Algorithm:

1. Discretize capital grid: k ∈ [kmin, kmax] with N points

2. Initial guess: V 0(ki ) for all grid points

3. Iterate: For n = 0, 1, 2, . . .

V n+1(ki ) = max
c

{
u(c) + βV n((1− δ)ki + ki f

′(ki )− c)
}

subject to: 0 ≤ c ≤ f (ki ) + (1− δ)ki

4. Store policy: cn+1(ki ) and kn+1(ki ) = (1− δ)ki + ki f
′(ki )− cn+1(ki )

5. Check convergence: ‖V n+1 − V n‖ < tolerance

Implementation notes:

I Use interpolation for off-grid capital values

I Ensure kmax is large enough to cover relevant range

I Good initial guess speeds convergence significantly



Complete Algorithm

Algorithm 1 Ramsey VFI

1: Initialize: Grid K = {k1, k2, . . . , kJ}, Guess V 0(kj), set tolerance
2: Set n = 0
3: repeat
4: Calculate consumption at kj and each k ′j : c = max( , 0)

5: Find Maximum: [V 1(j),max idx ] = max(log(c) + βV 0)
6: Store Asset Policy: gk(j) = ‖(max idx)
7: Store Consumption Policy: gc(j) =
8: Check convergence: max(|V 1 − V 0|) < tol
9: Update: V 0 = V 1

10: n = n + 1
11: until convergence
12: Return: value functions, policy functions



Shooting Algorithm
Alternative approach: Exploit saddle path structure
Algorithm:

1. Given: Initial capital k0
2. Guess: Initial consumption c0
3. Simulate: Forward using Euler equation and capital evolution
4. Check: Does path converge to (k∗, c∗)?
5. If not: Adjust c0 guess and repeat
6. Continue: Until convergence criterion met

Advantages:
I Very accurate along optimal path
I No grid discretization error
I Fast once you find the right initial consumption

Disadvantages:
I Only gives policy for specific k0
I Sensitive to numerical precision
I Requires good initial guess for c0



When to Use Value Function Iteration

VFI is Better When:

1. Multiple initial conditions
I Need solutions for many different k0
I Policy function gives instant answers

2. Policy analysis & comparative statics
I Complete characterization of optimal behavior
I Easy to see parameter effects

3. Stochastic models
I Naturally handles uncertainty
I State-dependent policies g(k , z)

4. Discrete time problems
I VFI is the natural approach



When to Use Shooting Algorithm

Shooting is Better When:

1. High-dimensional state space
I VFI suffers from curse of dimensionality
I Shooting scales linearly

2. Continuous time models
I Natural for differential equations
I No time discretization error

3. High accuracy requirements
I Machine precision possible
I VFI limited by grid resolution

4. Memory constraints
I Minimal memory usage
I No large arrays to store



Key Takeaways

Equilibrium concepts:

I Sequential markets: Period-by-period trading with perfect foresight

I Recursive equilibrium: State-dependent prices and policies

I Equivalence: Both approaches yield same allocations in representative agent
models

Steady state analysis:

I Definition: Equilibrium with constant variables over time

I Determination: f ′(k∗) = ρ+ δ pins down k∗

I Stability: Saddle point with unique convergent path

Next steps: Use these concepts to analyze extensions with labor choice, government
policy, and uncertainty.
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