Neoclassical Growth with Exogenous Labor Ramsey-Cass-Koopmans Model

Christine Braun

University of Warwick EC9A2

Overview

Last lecture: Partial equilibrium analysis

- ▶ Consumption-savings with exogenous income and interest rate
- Agent takes y and r as given
- Optimal consumption: $c^*(a) = (1 \beta)(1 + r)(a + \frac{y}{r})$

Today: General equilibrium analysis

- Endogenous income and returns through capital accumulation
- ► Agent chooses consumption and investment
- Output produced using accumulated capital
- Interest rate determined by marginal product of capital

Key insight: Saving today increases tomorrow's productive capacity, affecting both future income and returns to saving.

Ramsey-Cass-Koopmans Model

Key features:

- Infinite-horizon representative agent
- ► Endogenous capital accumulation
- ► Neoclassical production function
- Perfect competition and market clearing
- No uncertainty (deterministic environment)

Central questions:

- How much should society save vs. consume?
- What determines long-run capital stock and consumption?
- How does the economy transition to long-run equilibrium?
- What factors affect growth and accumulation?

Applications: Optimal growth, fiscal policy, development economics

Historical Context

Frank Ramsey (1928): "A Mathematical Theory of Saving"

- ▶ Normative question: How much should a nation save?
- Mathematical framework for optimal saving
- Foundation of modern growth theory

David Cass (1965) & Tjalling Koopmans (1965):

- Rigorous infinite-horizon dynamic programming approach
- Competitive equilibrium interpretation
- Decentralization results

Modern relevance:

- ► Benchmark model in macroeconomics
- Foundation for DSGE models
- ► Policy analysis framework
- Understanding long-run growth patterns

The Economic Environment

Representative agent lives forever and chooses consumption and investment.

Preferences:

$$U = \sum_{t=0}^{\infty} \beta^t u(c_t)$$

- $ightharpoonup c_t$: consumption at time t
- $\triangleright \beta \in (0,1)$: discount factor
- \triangleright $u(\cdot)$: period utility function (increasing, concave)

Technology:

$$y_t = f(k_t)$$

- \triangleright y_t : output at time t
- \triangleright k_t : capital stock at time t
- \blacktriangleright $f(\cdot)$: production function (increasing, concave)

Note: Labor is exogenous and normalized to 1, so $f(k_t)$ represents output per worker.

Technology Assumptions

Neoclassical production function y = f(k) satisfies:

1. Positive and diminishing marginal product:

$$f'(k) > 0, \quad f''(k) < 0$$

2. Inada conditions:

$$\lim_{k\to 0} f'(k) = \infty, \quad \lim_{k\to \infty} f'(k) = 0$$

3. Standard normalization:

$$f(0) = 0$$

Economic interpretation:

- ► More capital increases output but at diminishing rate
- Very low capital has very high marginal productivity
- Very high capital has very low marginal productivity
- Ensures interior solutions and convergence

Capital Accumulation

Law of motion for capital:

$$k_{t+1} = (1 - \delta)k_t + i_t$$

where:

- \triangleright i_t : gross investment at time t
- $\delta \in (0,1)$: depreciation rate
- $(1 \delta)k_t$: undepreciated capital from period t

Resource constraint:

$$c_t + i_t = f(k_t)$$

Output can be either consumed or invested (no waste).

Combining these:

$$k_{t+1} = (1 - \delta)k_t + f(k_t) - c_t$$

Economic interpretation: Today's consumption choice determines tomorrow's capital stock, which affects future productive capacity.

Representative Household Problem

$$\max_{\{c_t,k_{t+1}\}_0^\infty} \sum_{t=0}^\infty \beta^t u(c_t)$$

subject to:

$$c_t + k_{t+1} = r_t k_t + (1 - \delta) k_t \quad \forall t \tag{1}$$

$$k_0$$
 given (2)

$$\lim_{t \to \infty} \beta^t u'(c_t) k_t = 0 \quad \text{(transversality)} \tag{3}$$

Budget Constraint:

- agents own the capital and get a return each period
- ightharpoonup agent income $(r_t k_t)$ must equal consumption and investment $(c_t + i_t)$
- replacing i_t with the law of motion of capital gives (1)

Representative Firm Problem

Each period the firm maximizes profits taking price (r_t) as given

$$\pi_t = \max_{k_t^d} f(k_t^d) - r_t k_t^d$$

where k_t^d is capital demand.

Equilibrium vs. Optimum

Optimum: The best possible outcome according to some criterion (usually maximizing welfare or utility)

- ▶ Perspective: Normative what should happen
- ▶ Determined by: A social planner who can control all variables
- ► Criterion: Usually maximizes total social welfare
- Single optimization problem

Equilibrium: A state where no agent has an incentive to unilaterally change their behavior

- Perspective: Positive what will happen given how agents actually behave
- Determined by: Individual optimization by all agents simultaneously
- ► Criterion: Each agent maximizes their own objective, taking others' actions as given
- Multiple optimization problems (households, firms)

First Welfare Theorem: Under perfect competition and standard assumptions, competitive equilibrium equals social optimum.

Defining Economic Equilibrium

General definition: An equilibrium is a state where all economic agents optimize given their constraints, and all markets clear.

Key components:

- 1. Individual optimization: Each agent chooses actions to maximize their objective
- 2. Market clearing: Supply equals demand in all markets
- 3. Consistency: Agents' beliefs about prices and others' actions are correct
- 4. **No incentive to deviate:** Given equilibrium prices and others' actions, no agent wants to change their behavior

In the Ramsey model context:

- Households maximize utility subject to budget constraints
- Firms maximize profits subject to technology constraints
- Capital and goods markets clear
- Price expectations are fulfilled

Equilibrium Concepts

Sequential Market Equilibrium: An equilibrium where there's a complete set of markets for goods at every date (and state), all trading occurs at time 0, and prices clear all markets simultaneously.

- outlines a set of prices and allocations that result from agent optimization and market clearing
- think Lagrangian Method from first lecture

Recursive Equilibrium: An equilibrium characterized by time-invariant policy functions and value functions, where current decisions depend only on current state variables (not the entire history).

- outlines functions (value, policy, pricing) that result from agent optimization and market clearing
- think dynamic program from first lecture

Sequential Markets: Basic Setup

Market structure: Markets open sequentially over time, one period at a time.

At each date t:

- Capital rental market opens with price r_t
- ▶ Goods market opens with price $p_t = 1$ (numeraire)
- Agents trade based on current information
- Markets close, time moves to t+1

Key features:

- ▶ **Spot markets only:** No trading of future delivery contracts
- ▶ **Sequential decision-making:** Agents decide period by period
- ▶ Price-taking behavior: Agents take current prices as given
- ▶ Perfect foresight: Agents correctly anticipate future prices

Sequential Markets

Household's first-order condition:

$$u'(c_t) = \beta u'(c_{t+1})[1 - \delta + r_{t+1}]$$

Firm's first-order condition:

$$r_t = f'(k_t)$$

Combine to get the **Euler equation**

$$u'(c_t) = \beta u'(c_{t+1})[1 - \delta + f'(k_{t+1})]$$

which tells us the rate at which consumption changes given $f'(k_{t+1})$. So we also need to know how capital changes and an initial condition k_0 . Combining the law of motion of capital and the resource constraints gives us

$$k_{t+1} = (1 - \delta)k_t + f(k_t) - c_t$$

Sequential Markets: Equilibrium Definition

A Sequential Markets Equilibrium is a sequence of:

- ▶ Allocations: $\{c_t, k_{t+1}, k_t^d\}_{t=0}^{\infty}$
- ightharpoonup Prices: $\{r_t\}_{t=0}^{\infty}$

such that:

- 1. Household optimization: $\{c_t, k_{t+1}\}$ solves household's problem
- 2. Firm optimization: k_t^d solves firm's problem each period
- 3. Capital market clearing: $k_t^d = k_t$ for all t
- 4. Goods market clearing: $c_t + i_t = f(k_t)$ for all t

Challenge: Agents must have perfect foresight about future prices $\{r_s\}_{s=t+1}^{\infty}$ to solve their optimization problems at date t.

Motivation for Recursive Approach

Challenges with sequential markets:

- Agents need to predict infinite sequence of future prices
- ► Computationally complex: infinite-dimensional price space
- ▶ Difficult to analyze stability and uniqueness
- ► Hard to compute numerically

Recursive approach solution:

- Express everything in terms of current state variables
- Prices depend only on current aggregate state
- Reduces infinite-dimensional problem to finite-dimensional
- ► Enables dynamic programming techniques

Key idea: Prices can be expressed as functions of current state rather than time. **State variable in Ramsey model:** Current aggregate capital stock K_t .

Recursive Equilibrium: Setup

Aggregate state: K (per-capita capital since population normalized to 1) **Price functions:**

ightharpoonup Rental rate: r(K)

Aggregate law of motion:

$$K' = G(K)$$

where $G(\cdot)$ is the aggregate policy function to be determined in equilibrium.

Individual state: Current capital holdings k

Individual problem: Given aggregate state K and law of motion K' = G(K):

$$V(k,K) = \max_{c,k'} \left\{ u(c) + \beta V(k',G(K)) \right\}$$

subject to:
$$c + k' = r(K)k + (1 - \delta)k$$

Recursive Equilibrium: Individual Optimization

Individual policy functions: $c = g_c(k, K)$ and $k' = g_k(k, K)$ First-order conditions:

$$u'(g_c(k,K)) = \beta V_k(g_k(k,K),G(K))$$

Envelope condition:

$$V_k(k,K) = u'(g_c(k,K))[r(K) + 1 - \delta]$$

Combining:

$$u'(g_c(k,K)) = \beta[r(G(K)) + 1 - \delta]u'(g_c(g_k(k,K), G(K)))$$

$$u'(c) = \beta[r(G(K)) + 1 - \delta]u'(c')$$

Note: Individual takes aggregate law of motion G(K) as given.

Recursive Equilibrium: Consistency Conditions

Representative agent assumption: Individual capital equals aggregate capital supplied: k = K.

Market clearing in capital market:

$$r(K) = f'(K) \Rightarrow K = K^d$$

Market clearing in goods market:

$$g_c(K,K) + g_k(K,K) = f(K) + (1-\delta)K$$

Consistency of aggregate law of motion:

$$G(K) = g_k(K, K)$$

Key insight: Aggregate behavior must be consistent with individual optimization.

Recursive Competitive Equilibrium: Definition

A Recursive Competitive Equilibrium consists of:

- ightharpoonup Value function: V(k, K)
- ▶ Policy functions: $g_c(k, K)$, $g_k(k, K)$
- ightharpoonup Price functions: r(K)
- ightharpoonup Aggregate law of motion: G(K)

such that:

- 1. **Individual optimization:** Given (r(K), w(K), G(K)), the value and policy functions solve the individual's dynamic programming problem
- 2. Market clearing: r(K) = f'(K)
- 3. Consistency: $G(K) = g_k(K, K)$

Equivalence of the Two Approaches

Fundamental result: Under standard assumptions, sequential markets equilibrium and recursive competitive equilibrium yield identical allocations.

Why they're equivalent:

- Both implement the same first-order conditions
- Both satisfy the same market clearing conditions
- Both respect the same resource constraints
- Representative agent framework eliminates distributional issues

Mathematical equivalence:

- Sequential: $u'(c_t) = \beta u'(c_{t+1})[1 \delta + f'(k_{t+1})]$
- ▶ Recursive: $u'(c) = \beta u'(c')[1 \delta + f'(k')]$ where $c' = g_c(k', k')$

Both lead to: $k_{t+1} = (1 - \delta)k_t + f(k_t) - c_t$ with same Euler equation.

Taking Stock

So far we have discussed

- ightharpoonup given an initial capital stock k_0 , **sequential markets** approach gives optimal consumption path
- recursive approach gives a consumption policy function which we can use to determine optimal consumption at any capital level
- \triangleright given the same initial capital stock k_0 , both approaches give the same answer

Now let's think about

- how capital changes over time, i.e. growing or shrinking?
- are there any cases where capital is not changing?
- \blacktriangleright how does the initial capital stock k_0 affect the dynamics?

Dynamics of the model

To understand the dynamics, we analyze the system:

$$k_{t+1} = (1 - \delta)k_t + f(k_t) - c_t$$
 (4)

$$u'(c_t) = \beta u'(c_{t+1})[1 - \delta + f'(k_{t+1})]$$
(5)

Steady State: A point in the system where all endogenous variables, (k, c), are constant over time.

Phase diagram: plot which shows all possible paths in (k, c) space and which ones lead to steady state.

Types of Steady States

1. Stable steady state:

- Small perturbations lead back to steady state
- Attracting in the dynamics

2. Unstable steady state:

- Small perturbations lead away from steady state
- Repelling in the dynamics

3. Saddle point steady state:

- Stable in some dimensions, unstable in others
- Unique convergent path (saddle path)

In Ramsey model: Steady state is saddle point stable with unique convergent path.

Steady State

In steady state:

$$k_{t+1} = k_t = k^* \quad \text{(constant capital)} \tag{6}$$

$$c_{t+1} = c_t = c^*$$
 (constant consumption) (7)

$$f'(k^*) = r^*$$
 (constant marginal product) (8)

Golden Rule Question

"What level of capital maximizes steady-state consumption per capita?"

Modified Golden Rule Question

"What level of capital do optimizing agents actually choose?"

The Golden Rule

Objective: Maximize steady-state consumption

In steady state $k_t = k_{t+1} = k$, so from the capital accumulation equation (6) we get

$$\max c = f(k) - \delta k$$

First-Order Condition

$$\frac{dc}{dk} = f'(k) - \delta = 0$$

Golden Rule Condition

$$f'(k_{GR}) = \delta$$

Economic intuition: Balance marginal output against marginal investment needs

The Modified Golden Rule (Ramsey Rule)

Objective: Maximize discounted lifetime utility

Note: The consumption level needed to do this comes from the Euler equation.

From the Euler equation:

$$u'(c^*) = \beta u'(c^*)[1 - \delta + f'(k^*)]$$

Since $u'(c^*) > 0$, we can divide both sides:

$$1 = \beta[1 - \delta + f'(k^*)]$$

Solving for marginal product:

$$f'(k^*) = \frac{1}{\beta} - (1 - \delta) = \frac{1 - \beta}{\beta} + \delta$$

The Modified Golden Rule (Ramsey Rule)

The steady-state condition:

$$f'(k^*) = \frac{1-\beta}{\beta} + \delta$$

can be rewritten as:

$$f'(k^*) = \rho + \delta$$

where $ho = rac{1-eta}{eta}$ is the subjective discount rate.

Economic interpretation:

- $ightharpoonup f'(k^*)$: marginal product of capital
- $ho + \delta$: "required return" on capital

Key relationship: Since $\rho > 0$, we have $f'(k^*) > f'(k_{GR})$, which implies $k^* < k_{GR}$ (by diminishing returns).

Economic intuition: Impatience (ρ) makes agents save less than Golden Rule

Steady-State Consumption

Once we know k^* , steady-state consumption follows from resource constraint:

$$c^* + i^* = f(k^*)$$

In steady state, investment just replaces depreciated capital:

$$k^* = (1 - \delta)k^* + i^* \quad \Rightarrow \quad i^* = \delta k^*$$

Therefore:

$$c^* = f(k^*) - \delta k^*$$

Economic interpretation:

- ightharpoonup Output: $f(k^*)$
- ▶ Replacement investment: δk^*
- ▶ Available for consumption: $f(k^*) \delta k^*$

Key insight: Higher steady-state capital doesn't always mean higher consumption due to depreciation costs!

The Phase Diagram

A **phase diagram** is a graphical representation of the state space of a dynamic system that shows:

- ▶ The direction of movement from any given state
- ► Equilibrium points and their stability properties
- Trajectories showing how the system evolves over time

They system:

$$k_{t+1} = (1 - \delta)k_t + f(k_t) - c_t$$

$$u'(c_t) = \beta u'(c_{t+1})[1 - \delta + f'(k_{t+1})]$$

For phase diagram, define:

$$\dot{k} = k_{t+1} - k_t = f(k_t) - \delta k_t - c_t$$

$$ightharpoonup \dot{c} = c_{t+1} - c_t$$
 (determined by Euler equation)

The $\dot{k} = 0$ Locus

$$\dot{k} = 0 \quad \Rightarrow \quad c = f(k) - \delta k$$

At low k: $f'(k) > n + \delta$ (by Inada conditions)

- ► So $c' = f'(k) (n + \delta) > 0$
- ► Locus is upward sloping

At high k: $f'(k) < n + \delta$ (diminishing returns)

- ► So $c' = f'(k) (n + \delta) < 0$
- Locus is downward sloping

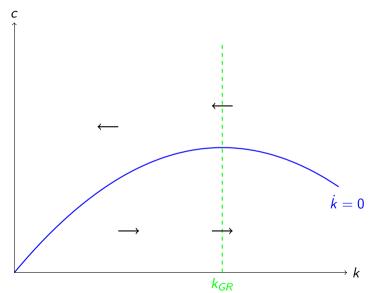
At some intermediate k^{GR} : $f'(k^{GR}) = n + \delta$

- ► So $c'(k^{GR}) = 0$
- ► This is the peak (Golden Rule capital stock!)

Dynamics

- Above locus: $c > f(k) \delta k \Rightarrow \Delta k < 0$ (capital falls)
- ▶ Below locus: $c < f(k) \delta k \Rightarrow \Delta k > 0$ (capital rises)

Phase Diagram: Ramsey Model Dynamics



The $\dot{c} = 0$ Locus

Consumption is constant when:

$$c_{t+1}=c_t$$

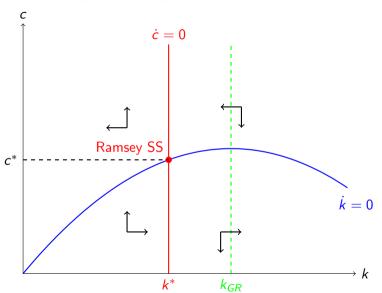
From Euler equation, this requires:

$$1 = \beta[1 - \delta + f'(k)]$$
$$f'(k) = \rho + \delta$$

Properties:

- ▶ Vertical line at k^* where $f'(k^*) = \rho + \delta$
- ► Independent of consumption level
- ▶ Left of line: $f'(k) > \rho + \delta \Rightarrow \Delta c > 0$ (consumption rises)
- ▶ Right of line: $f'(k) < \rho + \delta \Rightarrow \Delta c < 0$ (consumption falls)

Phase Diagram: Ramsey Model Dynamics



Phase Diagram Regions and Saddle Path

Four regions with different dynamics:

- ▶ **Region I:** $k < k^*$, high $c \to \Delta k < 0$, $\Delta c > 0$
- ▶ **Region II:** $k > k^*$, high $c \to \Delta k < 0$, $\Delta c < 0$
- ▶ **Region III:** $k < k^*$, low $c \to \Delta k > 0$, $\Delta c > 0$
- ▶ **Region IV:** $k > k^*$, low $c \to \Delta k > 0$, $\Delta c < 0$

A **saddle path** (or stable manifold) is the unique trajectory that approaches a saddle point equilibrium as time goes to infinity.

Saddle Path Stability

Key insight: Most initial conditions lead away from steady state!

Saddle path properties:

- ▶ Unique stable manifold leading to (k^*, c^*)
- ightharpoonup Given any initial k_0 , there's exactly one c_0 that leads to steady state
- ▶ All other initial consumption levels lead to explosive paths

Economic interpretation:

- **Too high initial** c: Insufficient saving \rightarrow capital declines \rightarrow economy collapses
- **Too low initial** c: Excessive saving \rightarrow capital explodes \rightarrow violates transversality
- ▶ Saddle path c: "Just right" balance between current and future consumption

Policy implication: Forward-looking agents must choose initial consumption optimally to avoid unstable paths.

Multiple Steady States

Can there be multiple steady states?

In the basic Ramsey model: NO

- ▶ Condition $f'(k^*) = \rho + \delta$ has unique solution
- Strict concavity of f ensures uniqueness
- ► Inada conditions guarantee interior solution

Extensions with multiple steady states:

- ▶ Threshold effects: Different production technologies for different capital ranges
- **External effects:** f(k, K) where K is aggregate capital
- ▶ Non-convexities: Fixed costs or increasing returns to scale
- ▶ Multiple sectors: Different technologies across sectors

Policy implications:

- ► Multiple steady states → History matters
- ▶ Policy interventions can switch between steady states
- "Big push" theories of development

Two Approaches to Solving Dynamic Models

The Question: How do we numerically solve the Ramsey model to find optimal consumption and capital paths?

Two Main Approaches:

- 1. Value Function Iteration (VFI)
 - Solves Bellman equation recursively
 - Finds policy function c = g(k)
- 2. Shooting Algorithm
 - Solves differential equations with boundary conditions
 - ▶ Finds specific trajectory $\{c(t), k(t)\}$

Value Function Iteration for Ramsey Model

Algorithm:

- 1. **Discretize** capital grid: $k \in [k_{\min}, k_{\max}]$ with N points
- 2. Initial guess: $V^0(k_i)$ for all grid points
- 3. **Iterate:** For n = 0, 1, 2, ...

$$V^{n+1}(k_i) = \max_{c} \{ u(c) + \beta V^n((1-\delta)k_i + k_i f'(k_i) - c) \}$$

subject to:
$$0 \le c \le f(k_i) + (1 - \delta)k_i$$

- 4. Store policy: $c^{n+1}(k_i)$ and $k^{n+1}(k_i) = (1-\delta)k_i + k_i f'(k_i) c^{n+1}(k_i)$
- 5. Check convergence: $||V^{n+1} V^n|| < \text{tolerance}$

Implementation notes:

- ▶ Use interpolation for off-grid capital values
- \triangleright Ensure k_{max} is large enough to cover relevant range
- ► Good initial guess speeds convergence significantly

Complete Algorithm

Algorithm 1 Ramsey VFI

- 1: **Initialize**: Grid $\mathcal{K} = \{k_1, k_2, \dots, k_J\}$, Guess $V^0(k_j)$, set tolerance
- 2: Set n = 0
- 3: repeat
- 4: Calculate consumption at k_j and each k'_j : c = max(0.00)
- 5: Find Maximum: $[V^1(j), max_i dx] = max(log(c) + \beta V^0)$
- 6: Store Asset Policy: $g_k(j) = \|(max_i dx)\|$
- 7: Store Consumption Policy: $g_c(j) =$
- 8: Check convergence: $max(|V^1 V^0|) < tol$
- 9: Update: $V^0 = V^1$
- 10: n = n + 1
- 11: until convergence
- 12: Return: value functions, policy functions

Shooting Algorithm

Alternative approach: Exploit saddle path structure

Algorithm:

- 1. **Given:** Initial capital k_0
- 2. **Guess:** Initial consumption c_0
- 3. Simulate: Forward using Euler equation and capital evolution
- 4. **Check:** Does path converge to (k^*, c^*) ?
- 5. **If not:** Adjust c_0 guess and repeat
- 6. Continue: Until convergence criterion met

Advantages:

- Very accurate along optimal path
- No grid discretization error
- ► Fast once you find the right initial consumption

Disadvantages:

- \triangleright Only gives policy for specific k_0
- Sensitive to numerical precision
- \triangleright Requires good initial guess for c_0

When to Use Value Function Iteration

VFI is Better When:

- 1. Multiple initial conditions
 - ▶ Need solutions for many different k_0
 - Policy function gives instant answers
- 2. Policy analysis & comparative statics
 - Complete characterization of optimal behavior
 - Easy to see parameter effects
- 3. Stochastic models
 - Naturally handles uncertainty
 - ightharpoonup State-dependent policies g(k, z)
- 4. Discrete time problems
 - ► VFI is the natural approach

When to Use Shooting Algorithm

Shooting is Better When:

- 1. High-dimensional state space
 - ▶ VFI suffers from curse of dimensionality
 - Shooting scales linearly

2. Continuous time models

- Natural for differential equations
- No time discretization error

3. High accuracy requirements

- Machine precision possible
- VFI limited by grid resolution

4. Memory constraints

- Minimal memory usage
- No large arrays to store

Key Takeaways

Equilibrium concepts:

- Sequential markets: Period-by-period trading with perfect foresight
- Recursive equilibrium: State-dependent prices and policies
- ► **Equivalence:** Both approaches yield same allocations in representative agent models

Steady state analysis:

- ▶ **Definition:** Equilibrium with constant variables over time
- ▶ **Determination:** $f'(k^*) = \rho + \delta$ pins down k^*
- Stability: Saddle point with unique convergent path

Next steps: Use these concepts to analyze extensions with labor choice, government policy, and uncertainty.

