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Overview

So far we have discussed consumption-saving decisions under certainty

I partial equilibrium - exogenous interest rate r and income y

I general equilibrium - endogenous the interest rate r

I general equilibrium with labor choice → intertemporal and Intratemporal tradeoffs

Moving forward we will discuss consumption-saving decisions under uncertainty

I Today: partial equilibrium with exogenously varying interest rate r and income y

I general equilibrium - with aggregate uncertainty

I touch on idiosyncratic uncertainty



From Certainty to Uncertainty: What Changes?
Key Question: How does uncertainty about returns and income change optimal
consumption and saving compared to perfect foresight?

Consumption-savings with certainty:

I Known constant return r on savings

I Predictable income stream

I Smooth consumption path (Euler equation)

I Capital converges to steady state

Consumption-savings with uncertainty:

I Today: Uncertain returns rt on savings

I Uncertain labor income yt
I Precautionary saving motives emerge

I Consumption and savings follow stochastic processes



The Economic Environment

Representative Agent: Maximizes expected lifetime utility

E0

∞∑
t=0

βtu(ct)

where:

I β ∈ (0, 1): discount factor

I u(ct): instantaneous utility function

I ct : consumption at time t

I E0: expectation operator conditional on information available at time 0

Standard Assumptions on Utility:

I u′(c) > 0, u′′(c) < 0 (diminishing marginal utility)

I Inada conditions: u′(0) =∞, u′(∞) = 0



The Agent’s Budget Constraint

ct + kt+1 = (1 + rt)kt + yt

where:

I kt : capital stock (wealth/savings) at beginning of period t

I rt : stochastic return on capital in period t

I yt : stochastic labor income in period t

I ct : consumption in period t

I kt+1: savings carried into next period

Economic Interpretation:

I Agent starts period with wealth kt
I Earns return (1 + rt)kt on invested wealth

I Receives labor income yt
I Allocates total resources between consumption ct and saving kt+1



Stochastic Processes
Two Sources of Uncertainty:

1. Stochastic Returns:

log(1 + rt) = ρr log(1 + rt−1) + εr ,t

where εr ,t ∼ N(0, σ2r ) and |ρr | < 1

2. Stochastic Labor Income:

log yt = ρy log yt−1 + εy ,t

where εy ,t ∼ N(0, σ2y ) and |ρy | < 1

Assumptions:

I Both processes are AR(1) for tractability

I Shocks can be correlated: Cov(εr ,t , εy ,t) = σry
I Processes are stationary (mean-reverting)



What Does E0 Mean?
In our objective function:

E0

∞∑
t=0

βtu(ct)

E0 is the expectation operator conditional on time-0 information.

Formally:
E0[·] = E [·|I0]

where I0 is the information set at time 0.

What’s in I0?

I Initial capital stock: k0
I Initial shock: r0 and y0
I Knowledge of stochastic processes: ρr , σ

2
r , ρy , σ2y and σry

I All model parameters (β, etc.)



Evolution of Information Sets: Timeline
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Key Point: At each date t, agent knows current and all past shocks, but future
shocks are uncertain.



Information Sets Over Time

Information evolves as shocks are realized:

At time 0: I0 = {k0, r0, y0,model parameters}
At time 1: I1 = {k0, r0, y0, k1, r1, y1,model parameters}
At time 2: I2 = {k0, r0, y0, k1, r1, y1, k2, r2, y2,model parameters}
And so on...

Key Point: It ⊇ It−1 (information never decreases)

Notation:
Et [·] = E [·|It ]

This is the expectation conditional on all information available at time t.



The Challenge: From Sequential to Recursive

Sequential Problem:

max
{ct ,kt+1}∞t=0

E0

∞∑
t=0

βtu(ct)

subject to budget constraints for all t.

How can we get a recursive problem: Through time-separability and the law of
iterated expectations.

First we need to determine the control and state variables

I Control: consumption ct and next period capital kt+1

I State: ?



State Variables: What and Why?

Definition: a state variables is a variable whose value:

1. Carries over from period to period (persistence)

2. Cannot be chosen freely in the current period (predetermined)

3. Summarizes relevant history for decision-making

4. Affects future constraints and opportunities

Our State Variables: (kt , rt , yt)

Key Property - Markov: Given (kt , rt , yt), the entire history
(k0, r0, y0, . . . , kt−1, rt−1, yt−1) is irrelevant for optimal decisions.



Why Each State Variable is Necessary
1. Capital/Wealth (kt):

I Carries over to t + 1

I Predetermined at time t (chosen at t − 1)

I Determines return income: (1 + rt)kt
I Summarizes all past decisions: Accumulated result of past consumption/saving

2. Current Return (rt):

I Affects current resources: (1 + rt)kt depends on rt
I Persistent process and carry over: rt predicts rt+1 (AR(1) with ρr 6= 0)

I Summarizes history: Markov property

3. Current Income (yt):

I Direct budget impact: Available resources for consumption/saving

I Persistent process and carry over: yt predicts yt+1 (AR(1) with ρy 6= 0)

I Summarizes history: Markov property



The Challenge: From Sequential to Recursive

Sequential Problem:

max
{ct ,kt+1}∞t=0

E0

∞∑
t=0

βtu(ct)

subject to budget constraints for all t.

How can we get a recursive problem: Through time-separability and the law of
iterated expectations.

First we need to determine the control and state variables

I Control: consumption ct and next period capital kt+1

I State: (k1, rt , yt)



Law of Iterated Expectations

Statement: For any random variable X and information sets Is ⊆ It :

E [X |Is ] = E [E [X |It ]|Is ]

Special Case (Tower Property): When s < t:

Es [X ] = Es [Et [X ]]

Intuitive Interpretation:

I Today’s expectation of X equals today’s expectation of tomorrow’s expectation of
X

I Information revealed between s and t doesn’t change the s-period expectation on
average



Time-Separable Utility Function

Our utility specification:

U =
∞∑
t=0

βtu(ct)

Key Properties:

1. Additively separable: Total utility is sum of period utilities

2. No direct cross-period effects: ut depends only on ct

3. Constant discounting: Same β in each period

What this rules out:

I Habit formation: u(ct , ct−1)

I Durability: u(ct + αct−1)

I Time-varying discounting:
∑∞

t=0 βtu(ct)



Step 1: Separate Current Period
Start with:

V (k0, r0, y0) = max
{ct ,kt+1}∞0

E0

∞∑
t=0

βtu(ct)

Separate first period:

E0

∞∑
t=0

βtu(ct) = E0[u(c0)] + E0

∞∑
t=1

βtu(ct)

Since c0 is chosen at time 0 (no uncertainty):

= u(c0) + E0

∞∑
t=1

βtu(ct)

Factor out β:

= u(c0) + βE0

∞∑
t=1

βt−1u(ct)



Step 2: Apply Law of Iterated Expectations
We have:

u(c0) + βE0

∞∑
t=1

βt−1u(ct)

Key insight: Decisions from t = 1 onward will be made optimally given info at t = 1.

Apply law of iterated expectations:

E0

∞∑
t=1

βt−1u(ct) = E0

[
E1

∞∑
t=1

βt−1u(ct)

]
But the inner expectation is just the value function at t = 1:

E1

∞∑
t=1

βt−1u(ct) = V (k1, r1, y1)

Therefore:

E0

∞∑
t=0

βtu(ct) = u(c0) + βE0[V (k1, r1, y1)]



Step 3: The Recursive Structure Emerges

From the previous slide:

E0

∞∑
t=0

βtu(ct) = u(c0) + βE0[V (k1, r1, y1)]

The agent’s problem becomes:

max
c0,k1
{u(c0) + βE0[V (k1, r1, y1)]}

subject to the time-0 budget constraint.

Key observation: This has the same structure in every period



Why the Same Function in Every Period?

Question: Why is V (·, ·) the same function in all periods?
Answer: Two key assumptions ensure this:

1. Stationarity:

I Stochastic process parameters (ρr , σ2r , ρy ,σ2y , and σry ) don’t change over time

I Preference parameters (β, u(·)) don’t change over time

2. Markov Property:

I Future state (kt+1, rt+1, yt+1) depends only on current state (kt , rt , yt)

I No additional state variables carry information about the future

I History beyond current state is irrelevant for optimal decisions



The Markov Property

Markov Property for our model:
The transition probability satisfies:

Pr(rt+1, yt+1|rt , ytrt−1, yt−1, . . . , r0, y0) = Pr(rt+1, yt+1|rt , yt)

Implication: State (kt , rt , yt) is sufficient statistic for making optimal decisions.

This enables us to write:

V (kt , rt , yt) = max
ct ,kt+1

{u(ct) + βE [V (kt+1, rt+1, yt+1)|rt , yt ]}

Note: In the future state (kt+1, rt+1, yt+1) only rt+1 and yt+1 are uncertain, kt+1 is
already chosen by the agent, so we condition only on rt and yt



Expectations Conditional on Current State

In the Bellman equation: (doping the time subscript)

V (k , r , y) = max
c,k ′

{
u(c) + βE [V (k ′, r ′, y ′)|r , y ]

}
What does E [·|r , y ] mean?

I Expectation over next period’s interest rate r ′ and income y ′

I Conditional on current interest rate r and income y

I Using the known transition probabilities

For our AR(1) process:

E [V (k ′, r ′, y ′)|AL] =

∫
r ,y

V (k ′, r , y)dF (r , y)

where F (r , y) is the joint cdf of r and y .



The Bellman Equation

The agent’s problem can be written recursively as:

V (k , r , y) = max
c,k ′

{
u(c) + βE [V (k ′, r ′, y ′)|r , y ]

}
subject to:

c + k ′ = (1 + r)k + y (1)

k ′ ≥ 0 no borrowing (2)

(r ′, y ′) ∼ joint stochastic process (3)

State Variables: (k , r , y) - wealth, current return, current income
Control Variables: c , k ′ - consumption and next-period wealth



First-Order Conditions

FOC for consumption:

u′(c) = βE [V ′(k ′, r ′, y ′)|r , y ]

Envelope condition:
V ′(k , r , y) = (1 + r)u′(c)

Combining these yields the stochastic Euler equation:

u′(c) = βE [(1 + r ′)u′(c ′)|r , y ]

If the borrowing constraint binds:

u′(c) > βE [(1 + r ′)u′(c ′)|r , y ]



The Stochastic Euler Equation: Key Insights

Using time subscripts
u′(ct) = βEt [(1 + rt+1)u′(ct+1)]

Two Sources of Uncertainty:

1. Return uncertainty: (1 + rt+1) is random

2. Consumption uncertainty: ct+1 is random (depends on yt+1)

Implications:

I Can’t simply use expected values: E [XY ] 6= E [X ]E [Y ] in general

I Covariance between returns and marginal utility matters

I Jensen’s inequality effects from convex marginal utility



Decomposing the Right-Hand Side

We can rewrite the expectation as:

βEt [(1 + rt+1)u′(ct+1)] =

βEt [1 + rt+1] · Et [u
′(ct+1)] + βCovt [(1 + rt+1), u′(ct+1)]

This gives us three economic effects:

1. Expected Return Effect: βEt [1 + rt+1] · Et [u
′(ct+1)]

2. Precautionary Saving Effect: Et [u
′(ct+1)] 6= u′(Et [ct+1])

3. Risk Premium Effect: Covt [(1 + rt+1), u′(ct+1)]



Effect 1: Expected Return Effect

βEt [1 + rt+1] · Et [u
′(ct+1)]

Economic interpretation:

I Higher expected returns make saving more attractive

I Similar to deterministic case but uses expected values

I Standard intertemporal substitution effect

Example:

I If Et [rt+1] increases (e.g., Fed raises interest rates)

I Agent finds it optimal to save more, consume less today

I Future consumption becomes relatively cheaper

Policy implication: Monetary policy affects consumption through expected return
channel.



Effect 2: Precautionary Saving Effect

By Jensen’s inequality, when u′′′(c) > 0 (convex marginal utility):

Et [u
′(ct+1)] > u′(Et [ct+1])

I Uncertainty about future consumption raises expected marginal utility

I Makes saving more attractive even if expected consumption is unchanged

Result: Uncertainty about future consumption ⇒ save more today!



Effect 3: Risk Premium Effect

Covt [(1 + rt+1), u′(ct+1)]

The sign of this covariance determines the risk properties of the asset:

Case 1: Cov[(1 + rt+1), u′(ct+1)] < 0 (Negative)

I Low returns occur when marginal utility is high (bad times)

I Asset is risky from consumption-smoothing perspective

I Agent demands risk premium (higher expected return)

I Example: Stocks that crash during recessions

Case 2: Cov[(1 + rt+1), u′(ct+1)] > 0 (Positive)

I High returns occur when marginal utility is high (bad times)

I Asset provides insurance against consumption risk

I Agent accepts lower expected return

I Example: Safe bonds that appreciate during recessions



Summary: Three Forces in the Stochastic Euler Equation

The stochastic Euler equation: u′(ct) = βEt [(1 + rt+1)u′(ct+1)]
captures three fundamental economic forces:

1. Expected Return Effect (Standard intertemporal substitution)

I Trade off consumption today vs. tomorrow

I Driven by expected returns: Et [1 + rt+1]

2. Precautionary saving

I Uncertainty about future consumption

I Jensen’s inequality: Et [u
′(ct+1)] > u′(Et [ct+1])

3. Risk premium effects

I Covariance between returns and marginal utility

I Determines which assets are ”safe” vs. ”risky”



Special Case 1: Only Income Risk

Setup: Constant returns r , uncertain income yt
Euler equation becomes:

u′(ct) = β(1 + r)Et [u
′(ct+1)]

Key insight: Pure precautionary effect

I Et [u
′(ct+1)] > u′(Et [ct+1]) when income is uncertain

I Agent saves more than in deterministic case

I Building buffer stock against income shocks

Economic interpretation:

I Higher expected marginal utility makes saving attractive

I Wealth serves as self-insurance against income volatility

I Stronger effect with higher risk aversion



Special Case 2: Only Return Risk
Setup: Uncertain returns rt , constant income ȳ
Euler equation:

u′(ct) = βEt [(1 + rt+1)u′(ct+1)]

Economic interpretation:

I Agents face portfolio risk - returns on savings are uncertain

I Higher return volatility ⇒ more precautionary saving

Two competing effects:

1. Higher expected returns: Encourages more saving

2. Return volatility: May discourage saving (risk premium effect)

Net effect depends on:

I Higher risk aversion ⇒ volatility effect dominates

I Wealth level: Rich agents can better tolerate return risk



How do we solve these models?
Simplify: Lets consider only special case 1: stochastic income

rt = r and yt ∈ {yL, yH}

with transition matrix P.

No closed-form solution because:
I Nonlinear Euler equation with expectations
I State-dependent policy functions
I Stochastic income process creates complex dynamics

Use Value function iteration (VFI) to get:
I Value Function: V (k, y)
I Consumption policy function: gc(k , y)
I Capital policy function: gk(k , y)

Basic idea: Start with guess for value function, iterate until convergence using
Bellman operator.



Discretize State Space

Income space: Already discrete

I Income grid: {yL, yH}
I Transition matrix: P

Capital grid:

I Choose bounds: k ∈ [kmin, kmax]

I kmin = 0 (no borrowing)

I kmax: Large enough that never reached in equilibrium

I Grid points: {k1, k2, . . . , kNk
}

Total state space: Nk × 2 grid points



VFI Algorithm: Simplified Version

Algorithm 1 Value Function Iteration - Two State

1: Initialize: V 0(ki , yL), V 0(ki , yH) for all i
2: repeat
3: for i = 1 to Nk do
4: // Low income state
5: V n+1(ki , yL) = maxk ′ {u(c) + β[pLLV

n(k ′, yL) + pLHV
n(k ′, yH)]}

6: where c = (1 + r)ki + yL − k ′

7: Store: k ′i ,L = gk(ki , yL)
8: // High income state
9: V n+1(ki , yH) = maxk ′ {u(c) + β[pHLV

n(k ′, yL) + pHHV
n(k ′, yH)]}

10: where c = (1 + r)ki + yH − k ′

11: Store: k ′i ,H = gk(ki , yH)
12: end for
13: n = n + 1
14: until maxi |V n+1(ki , yj)− V n(ki , yj)| < ε for j ∈ {L,H}



Consumption Policy Function

Optimal consumption: c = gc(k, y)

k

c

yH

yL

Key Properties:

I Increasing in wealth: ∂g c

∂k > 0

I Concave in wealth: Diminishing marginal propensity to consume



Savings Policy Function
Optimal savings: k ′ = gk(k , y)

k

k ′ 45◦ k ′ = gk(k , yH) (good times)

k ′ = gk(k , yL) (bad times)

kTargetL kTargetH

Key insights:
I State-dependent targets: Different wealth targets for different income states
I Buffer stock behavior: Build up wealth in good times, run down in bad times



Buffer Stock Behavior

Key Insight: Wealth serves dual purpose:

1. Standard Ramsey role: Smooth consumption over time

2. Insurance role: Buffer against income/return shocks

Implications:

I Target wealth level: Higher than deterministic steady state
I State-dependent behavior:

I After bad shocks: Cut consumption, rebuild wealth
I After good shocks: Increase consumption, moderate wealth growth

I Incomplete consumption smoothing: Can’t fully insure against all risks

Micro Evidence: Consistent with observed household behavior:

I Higher saving rates for uncertain income groups

I “Hand-to-mouth” behavior for low-wealth households



Effect of Risk Aversion (θ)

Higher Risk Aversion:

I Stronger precautionary motive: More saving for given uncertainty

I Lower consumption: For any wealth level, consume less

I Higher target wealth: Build larger buffer stocks

I Less sensitivity to shocks: Smoother consumption profile

Prudence measures how much an agent dislikes ”downside risk” - the tendency to
take precautionary actions when facing uncertainty.

−cu′′′(c)

u′′(c)

Economic interpretation: How much the marginal utility curve ”bends” (convexity of
marginal utility). Higher θ ⇒ higher prudence ⇒ more precautionary saving.



Effect of Income Volatility

Higher Income Uncertainty:

I Unambiguous increase in saving: Pure precautionary effect

I Higher target wealth: Need bigger buffer for income shocks

I More volatile consumption: Despite higher saving, consumption still fluctuates

For AR(1) process, Income Persistence (ρy) matters:

I Temporary shocks (ρy low): Smooth through saving/dis-saving

I Persistent shocks (ρy high): Must adjust consumption more

I Permanent shocks (ρy = 1): Consumption tracks income closely

Implication: Nature of income risk (temporary vs. permanent) crucially affects
optimal consumption smoothing.



Wealth Effects vs. Substitution Effects
Model with stochastic return r

Response to a positive return shock depends on wealth level:

Low Wealth (“Poor” agents):

I Strong wealth effect: Higher returns ⇒ feel richer ⇒ consume more

I Weak substitution effect: Close to subsistence ⇒ can’t reduce consumption
much

I Net effect: Consumption increases significantly with good return shocks

High Wealth (“Rich” agents):

I Weak wealth effect: Already wealthy ⇒ marginal utility low

I Strong substitution effect: Can afford to save more when returns high

I Net effect: Consumption less sensitive to return shocks

Policy Implication: Monetary policy (affecting returns) has distributional
consequences - affects poor more than rich.



Key Takeaways

Main Insights:

1. Uncertainty fundamentally changes saving behavior - even with perfect
capital markets

2. Precautionary saving emerges when marginal utility is convex (u′′′ > 0)

3. Wealth serves as insurance - buffer stock behavior

4. Risk aversion amplifies all these effects

5. Wealth level matters - rich and poor respond differently to shocks

Connection to Broader Literature:

I Foundation for heterogeneous agent models

I Links to asset pricing through stochastic discount factor

I Basis for understanding incomplete markets economies


