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Overview

So far we have discussed consumption-saving decisions under certainty
» partial equilibrium - exogenous interest rate r and income y
P general equilibrium - endogenous the interest rate r

» general equilibrium with labor choice — intertemporal and Intratemporal tradeoffs

Moving forward we will discuss consumption-saving decisions under uncertainty
> Today: partial equilibrium with exogenously varying interest rate r and income y
> general equilibrium - with aggregate uncertainty

» touch on idiosyncratic uncertainty



From Certainty to Uncertainty: What Changes?

Key Question: How does uncertainty about returns and income change optimal
consumption and saving compared to perfect foresight?

Consumption-savings with certainty:
» Known constant return r on savings
» Predictable income stream
» Smooth consumption path (Euler equation)

» Capital converges to steady state

Consumption-savings with uncertainty:
» Today: Uncertain returns r; on savings
» Uncertain labor income y;

» Precautionary saving motives emerge

» Consumption and savings follow stochastic processes



The Economic Environment

Representative Agent: Maximizes expected lifetime utility
oo
Eo Z ﬁtU(Ct)
t=0

where:
» € (0,1): discount factor
» u(ct): instantaneous utility function
» c;: consumption at time t

> E£y: expectation operator conditional on information available at time 0

Standard Assumptions on Utility:
> u'(c) >0, v"(c) <0 (diminishing marginal utility)

» Inada conditions: v/(0) = oo, v/(c0) =0



The Agent’s Budget Constraint

Ct + key1 = (L + re)ke + ye
where:
» k;: capital stock (wealth/savings) at beginning of period t
» r;: stochastic return on capital in period t
» y,: stochastic labor income in period t
» ¢;: consumption in period t

> k:y1: savings carried into next period

Economic Interpretation:
P> Agent starts period with wealth k;
» Earns return (1 + r¢)k: on invested wealth
P Receives labor income y;

> Allocates total resources between consumption ¢; and saving k;i1



Stochastic Processes
Two Sources of Uncertainty:

1. Stochastic Returns:
log(1 + re) = prlog(l + re—1) +er
where g, + ~ N(0,02) and |p,| < 1
2. Stochastic Labor Income:
logy: = pylogyt—1+eyt
where g, + ~ N(0,07) and |p,| < 1
Assumptions:
» Both processes are AR(1) for tractability

» Shocks can be correlated: Cov(e, ¢, €y.¢) = Ory
> Processes are stationary (mean-reverting)



What Does Ey Mean?

In our objective function:
[e.e]
Eo Y Blu(ce)
t=0
Ey is the expectation operator conditional on time-0 information.

Formally:
’ Eo[-] = E[|Zo]

where 7y is the information set at time O.

What'’s in Zy?
P Initial capital stock: kg
» Initial shock: ry and yp
» Knowledge of stochastic processes: p,, o2, Py, 0}2, and oy,
» All model parameters (3, etc.)



Evolution of Information Sets: Timeline

t=0 t=1 t=2 t=3 t=4
Choose Choose Choose
o, k1 c1, ko 0, k3

Key Point: At each date t, agent knows current and all past shocks, but future
shocks are uncertain.



Information Sets Over Time

Information evolves as shocks are realized:

At time 0: Zg = {ko, ro, Yo, model parameters}

At time 1: 7; = {ko, 10, Yo, k1, r1, y1, model parameters}

At time 2: 7 = {ko, ro, Yo, k1, 11, Y1, k2, r2, y2, model parameters}
And so on...

Key Point: Z; D Z;_; (information never decreases)

Notation:
E:[] = E[|Z¢]

This is the expectation conditional on all information available at time t.



The Challenge: From Sequential to Recursive

Sequential Problem:

max  Ep Z Bru(ct)
t=0

{et ker1}52

subject to budget constraints for all t.

How can we get a recursive problem: Through time-separability and the law of
iterated expectations.

First we need to determine the control and state variables

» Control: consumption ¢; and next period capital k:41
> State: 7



State Variables: What and Why?

Definition: a state variables is a variable whose value:
1. Carries over from period to period (persistence)
2. Cannot be chosen freely in the current period (predetermined)
3. Summarizes relevant history for decision-making

4. Affects future constraints and opportunities

Our State Variables: (ki r¢, y:)

Key Property - Markov: Given (k¢, rt, yt), the entire history
(ko, 10, Y0, - - - » kKe—1, re—1, Ye—1) is irrelevant for optimal decisions.



Why Each State Variable is Necessary
1. Capital/Wealth (k;):
» Carries over to t + 1
» Predetermined at time t (chosen at t — 1)
> Determines return income: (1 -+ r;)k;
» Summarizes all past decisions: Accumulated result of past consumption/saving

2. Current Return (r;):
> Affects current resources: (1 + r;)k; depends on r;
> Persistent process and carry over: r; predicts rr+1 (AR(1) with p, # 0)
» Summarizes history: Markov property

3. Current Income (y:):
» Direct budget impact: Available resources for consumption/saving
> Persistent process and carry over: y; predicts y;;1 (AR(1) with p, # 0)
» Summarizes history: Markov property



The Challenge: From Sequential to Recursive

Sequential Problem:

{Ct,kt+1}t°20

max  Ep Z Bru(ct)
t=0

subject to budget constraints for all t.

How can we get a recursive problem: Through time-separability and the law of
iterated expectations.

First we need to determine the control and state variables

» Control: consumption ¢; and next period capital k41
> State: (kl,rt,yt)



Law of Iterated Expectations
Statement: For any random variable X and information sets Z; C Z;:

E[X|Zs] = E[EIX|Z4]|Zs]

Special Case (Tower Property): When s < t:

Es[X] = Es[E[X]]

Intuitive Interpretation:

» Today's expectation of X equals today's expectation of tomorrow's expectation of
X

» Information revealed between s and t doesn’t change the s-period expectation on
average



Time-Separable Utility Function

Our utility specification:
o0
U=> ptu(c)
t=0

Key Properties:
1. Additively separable: Total utility is sum of period utilities
2. No direct cross-period effects: u; depends only on ¢;

3. Constant discounting: Same 3 in each period

What this rules out:
» Habit formation: u(ct, ce—1)
» Durability: u(c: + ace—1)
» Time-varying discounting: > 72 Bru(ct)



Step 1: Separate Current Period
Start with:

V(ko,ro,yo) max EoZB u Ct

Ctykt+1}o

Separate first period:

Eo Z Btu(ct) = Eolu(co)] + Eo Z Btu(ct)
t=0

t=1

Since ¢ is chosen at time 0 (no uncertainty):

= u(co) + Eo > Brulct)

t=1

Factor out j:

= u(co) + BEo Y B u(cr)

t=1



Step 2: Apply Law of Iterated Expectations
We have:

oo
u(co) + BEo Y B tu(cr)
t=1
Key insight: Decisions from t = 1 onward will be made optimally given info at t = 1.

Apply law of iterated expectations:

Eo Y B 'u(e) = Eo !El > 5t_1U(Ct)]

t=1 t=1
But the inner expectation is just the value function at t = 1:

[e.o]

E Z B u(cr) = V(k, r1,y1)

t=1

Therefore: -
Eo Y Blu(ct) = u(co) + BEo[V (ki r1, y1)]
t=0



Step 3: The Recursive Structure Emerges

From the previous slide:
Eo Y Blu(ct) = u(co) + BEo[V (ki 1, y1)]
t=0

The agent’s problem becomes:

max {u(co) + BEo[V (k1, r1, y1)]}

co,k1

subject to the time-0 budget constraint.

Key observation: This has the same structure in every period



Why the Same Function in Every Period?

Question: Why is V/(-,-) the same function in all periods?
Answer: Two key assumptions ensure this:

1. Stationarity:
» Stochastic process parameters (p,, 02, py,aﬁ, and o,,) don't change over time

» Preference parameters (3, u(-)) don't change over time

2. Markov Property:
» Future state (kt11, re+1, Ye+1) depends only on current state (ke, e, yt)
» No additional state variables carry information about the future

» History beyond current state is irrelevant for optimal decisions



The Markov Property

Markov Property for our model:
The transition probability satisfies:

Pr(rt+17)/t+1‘rt,)/trt—17yt—lu - 10, }’0) = Pl’(ft+1a)’t+1|ft7)/t)

Implication: State (ki, rt, ;) is sufficient statistic for making optimal decisions.

This enables us to write:

V(ke, re, yt) = mkax {u(ct) + BE[V (key1, rests Yer1)|re, yel }

Ct,Kt+1

Note: In the future state (key1, re+1, Yer1) only rey1 and yeiq are uncertain, keyq is
already chosen by the agent, so we condition only on r; and y;



Expectations Conditional on Current State

In the Bellman equation: (doping the time subscript)
V(k,r,y) = max{u(c) + BE[V (K r',y')|r, y]}
c,k!

What does E[:|r,y] mean?
» Expectation over next period’s interest rate r’ and income y’
» Conditional on current interest rate r and income y

» Using the known transition probabilities

For our AR(1) process:

EIV(K, ¢, y) A = / VK, r.y)dF(r,y)
r,y

where F(r,y) is the joint cdf of r and y.



The Bellman Equation

The agent's problem can be written recursively as:

V(k,r,y) = max{u(c) + BE[V(K',r',y')|r, ¥}

N =
~— ~—

subject to:
c+k=QQ+nrk+y (
k' >0 no borrowing (
(r',y’) ~ joint stochastic process (

w
~

State Variables: (k,r,y) - wealth, current return, current income
Control Variables: c, k' - consumption and next-period wealth



First-Order Conditions

FOC for consumption:

u'(c) = BE[V'(K',r',y)lr.y]

Envelope condition:
Vi(k,r,y) = (1+r)d(c)

Combining these yields the stochastic Euler equation:

u'(c) = BE[(1+ r)u'()Ir. ¥]

If the borrowing constraint binds:

u'(c) > BE[(1+r)u'(c)Ir.¥]



The Stochastic Euler Equation: Key Insights

Using time subscripts
u'(ce) = BE[(1 + req1)u(ces1)]
Two Sources of Uncertainty:
1. Return uncertainty: (1 + ryy1) is random

2. Consumption uncertainty: c;;1 is random (depends on y;41)

Implications:
» Can't simply use expected values: E[XY] # E[X]E[Y] in general
» Covariance between returns and marginal utility matters

» Jensen's inequality effects from convex marginal utility



Decomposing the Right-Hand Side

We can rewrite the expectation as:
BE[(L+ re1)u' (ce1)] =

BE[L + resa] - Ee[u'(cer1)] + BCove[(1 + ret1), u'(cer1)]

This gives us three economic effects:
1. Expected Return Effect: SE:[1 + rep1] - E¢[v/(cr41)]
2. Precautionary Saving Effect: E:[uv'(ct+1)] # U/ (Et[ce+1])
3. Risk Premium Effect: Cov:[(1 + rty1), v'(ce+1)]



Effect 1. Expected Return Effect

BE[1+ res1] - Ee[u'(crs1)]
Economic interpretation:
P Higher expected returns make saving more attractive
» Similar to deterministic case but uses expected values

» Standard intertemporal substitution effect

Example:
» If E¢[re41] increases (e.g., Fed raises interest rates)
> Agent finds it optimal to save more, consume less today

» Future consumption becomes relatively cheaper

Policy implication: Monetary policy affects consumption through expected return
channel.



Effect 2: Precautionary Saving Effect

By Jensen’s inequality, when u"(c) > 0 (convex marginal utility):

Eilv'(ces1)] > ' (Ee[ceral])

» Uncertainty about future consumption raises expected marginal utility

» Makes saving more attractive even if expected consumption is unchanged

Result: Uncertainty about future consumption = save more today!



Effect 3: Risk Premium Effect

Cove[(1 + rey1), u'(ceq1)]

The sign of this covariance determines the risk properties of the asset:

Case 1: Cov[(1+ res1), u'(ce+1)] < 0 (Negative)
» Low returns occur when marginal utility is high (bad times)
» Asset is risky from consumption-smoothing perspective
» Agent demands risk premium (higher expected return)
» Example: Stocks that crash during recessions

Case 2: Cov[(1 + re+1), U'(ce+1)] > 0 (Positive)
» High returns occur when marginal utility is high (bad times)
P Asset provides insurance against consumption risk
> Agent accepts lower expected return
» Example: Safe bonds that appreciate during recessions



Summary: Three Forces in the Stochastic Euler Equation

The stochastic Euler equation: v'(¢;) = BE[(1 + re+1)u’(cet1)]
captures three fundamental economic forces:

1. Expected Return Effect (Standard intertemporal substitution)
» Trade off consumption today vs. tomorrow
» Driven by expected returns: E¢[1 + rei1]
2. Precautionary saving
» Uncertainty about future consumption
» Jensen's inequality: E:[u'(ce+1)] > U'(Et[cr+1])
3. Risk premium effects
» Covariance between returns and marginal utility

» Determines which assets are "safe” vs. "risky”



Special Case 1: Only Income Risk

Setup: Constant returns r, uncertain income y;
Euler equation becomes:

u'(ce) = B(1 + r)Eefu'(ces1)]

Key insight: Pure precautionary effect
> Ei[v/(ce+1)] > ' (Et[ce+1]) when income is uncertain
P> Agent saves more than in deterministic case

» Building buffer stock against income shocks

Economic interpretation:
» Higher expected marginal utility makes saving attractive
» Wealth serves as self-insurance against income volatility

» Stronger effect with higher risk aversion



Special Case 2: Only Return Risk

Setup: Uncertain returns ry, constant income y
Euler equation:

U (cr) = BE[(1 + rev1)d (cer1)]

Economic interpretation:
> Agents face portfolio risk - returns on savings are uncertain

» Higher return volatility = more precautionary saving

Two competing effects:
1. Higher expected returns: Encourages more saving

2. Return volatility: May discourage saving (risk premium effect)

Net effect depends on:
» Higher risk aversion = volatility effect dominates

> Wealth level: Rich agents can better tolerate return risk



How do we solve these models?
Simplify: Lets consider only special case 1: stochastic income

re=r and y: € {yL,yn}

with transition matrix P.

No closed-form solution because:
» Nonlinear Euler equation with expectations
» State-dependent policy functions
» Stochastic income process creates complex dynamics

Use Value function iteration (VFI) to get:
» Value Function: V(k,y)
» Consumption policy function: g.(k, y)
» Capital policy function: gi(k,y)

Basic idea: Start with guess for value function, iterate until convergence using
Bellman operator.



Discretize State Space

Income space: Already discrete

» Income grid: {y;,yn}
» Transition matrix: P

Capital grid:
» Choose bounds: k € [kmin, Kmax]
» Kkmin = 0 (no borrowing)
> knax: Large enough that never reached in equilibrium
» Grid points: {ki, ko, ..., kn,}

Total state space: Ny x 2 grid points



VFI Algorithm: Simplified Version

Algorithm 1 Value Function Iteration - Two State

1: Initialize: VO(k;,y;), VO(ki,yn) for all i
2: repeat
3: for i =1 to N, do

4 // Low income state

5: V™ (ki, yi) = maxw {u(c) + Bl V(K yi) + peu V(K ym)]l}
6: where ¢ = (1 + r)k; + y. — K’

7: Store: ki, = gk(ki,y1)

8: // High income state

o V(K k) = maxe {u(c) + Bl V(K 1) + prn V(K yin)]}
10: where ¢ = (1 + r)kj + yn — K

11: Store: ki ;; = gk(ki, yH)

12:  end for
13: n=n+1
14: until max; | V" (ki y;) — V"(ki, y;)| < € for j € {L, H}




Consumption Policy Function
Optimal consumption: ¢ = g.(k,y)
C

YH
yL

Key Properties:
» Increasing in wealth: % >0

» Concave in wealth: Diminishing marginal propensity to consume



Savings Policy Function
Optimal savings: k' = gi(k,y)

/ [e]
, //45 k" = gi(k, yn) (good times)

k" = gk(k,y) (bad times)

Target, Target
k L k H

Key insights:
> State-dependent targets: Different wealth targets for different income states
> Buffer stock behavior: Build up wealth in good times, run down in bad times



Buffer Stock Behavior

Key Insight: Wealth serves dual purpose:
1. Standard Ramsey role: Smooth consumption over time

2. Insurance role: Buffer against income/return shocks

Implications:

> Target wealth level: Higher than deterministic steady state
> State-dependent behavior:

» After bad shocks: Cut consumption, rebuild wealth
> After good shocks: Increase consumption, moderate wealth growth

> Incomplete consumption smoothing: Can't fully insure against all risks

Micro Evidence: Consistent with observed household behavior:
» Higher saving rates for uncertain income groups

» “Hand-to-mouth” behavior for low-wealth households



Effect of Risk Aversion (6)

Higher Risk Aversion:
> Stronger precautionary motive: More saving for given uncertainty
> Lower consumption: For any wealth level, consume less
> Higher target wealth: Build larger buffer stocks

> Less sensitivity to shocks: Smoother consumption profile

Prudence measures how much an agent dislikes " downside risk” - the tendency to
take precautionary actions when facing uncertainty.

Cu///(c)
U//(C)

Economic interpretation: How much the marginal utility curve "bends” (convexity of
marginal utility). Higher 6 = higher prudence = more precautionary saving.



Effect of Income Volatility

Higher Income Uncertainty:
» Unambiguous increase in saving: Pure precautionary effect
» Higher target wealth: Need bigger buffer for income shocks

> More volatile consumption: Despite higher saving, consumption still fluctuates

For AR(1) process, Income Persistence (p,) matters:
» Temporary shocks (p, low): Smooth through saving/dis-saving
> Persistent shocks (p, high): Must adjust consumption more

» Permanent shocks (p, = 1): Consumption tracks income closely

Implication: Nature of income risk (temporary vs. permanent) crucially affects
optimal consumption smoothing.



Wealth Effects vs. Substitution Effects

Model with stochastic return r

Response to a positive return shock depends on wealth level:
Low Wealth (“Poor” agents):

» Strong wealth effect: Higher returns = feel richer = consume more

> Weak substitution effect: Close to subsistence = can't reduce consumption
much

> Net effect: Consumption increases significantly with good return shocks

High Wealth (“Rich” agents):
> Weak wealth effect: Already wealthy = marginal utility low
> Strong substitution effect: Can afford to save more when returns high

> Net effect: Consumption less sensitive to return shocks

Policy Implication: Monetary policy (affecting returns) has distributional
consequences - affects poor more than rich.



Key Takeaways

Main Insights:

1.

o LN

Uncertainty fundamentally changes saving behavior - even with perfect
capital markets

Precautionary saving emerges when marginal utility is convex (u” > 0)
Wealth serves as insurance - buffer stock behavior

Risk aversion amplifies all these effects

Wealth level matters - rich and poor respond differently to shocks

Connection to Broader Literature:

» Foundation for heterogeneous agent models

» Links to asset pricing through stochastic discount factor

» Basis for understanding incomplete markets economies



