# Consumption-Savings Under Uncertainty Cont. (Again)

Aiyagari: Adding Capital Accumulation

Christine Braun

University of Warwick EC9A2

### Overview

#### Last Time:

- ► Huggett (1993)
- ► Heterogeneous agent model with borrowing
- Steady state distribution is stationary
- Aggregate assets determine the interest rate in equilibrium

#### Today:

- ► Aiyagari (1994)
- Production sector with firms demanding capital
- Interest rate determined in equilibrium, capital demanded = capital supplied

## From Huggett to Aiyagari

### Huggett (1993): Heterogeneous agents, incomplete markets, no production

- Exogenous interest rate or bond market clearing
- ► Focus on wealth distribution and precautionary saving

### Aiyagari (1994): Adds production sector with capital accumulation

- Firms hire capital and labor competitively
- ► Endogenous factor prices (interest rate and wages)
- General equilibrium: household and firm optimization

### Key Questions:

- ▶ How does incomplete insurance affect aggregate capital accumulation?
- ▶ What are the welfare costs of market incompleteness?
- ▶ How do distributional effects interact with production?



#### Main Result Preview

Central Finding: Economy over-accumulates capital relative to complete markets

#### Mechanism:

- ► Incomplete markets ⇒ precautionary saving motive
- Agents want to hold positive assets for insurance
- ► In equilibrium: precautionary saving = capital stock
- ▶ More capital than socially optimal  $\Rightarrow r < \rho$  and  $MPK < \rho$

#### Welfare Implication:

- Too much saving crowds out consumption
- But incomplete insurance also costly
- ► Net welfare effect depends on parameters



### **Environment**

**Time**:  $t = 0, 1, 2, \dots$  (discrete, infinite horizon)

### Agents:

- Continuum of households of measure 1
- Continuum of firms of measure 1

#### **Production Technology:**

$$F(K,L) = K^{\alpha}L^{1-\alpha}$$

where  $0 < \alpha < 1$ , with constant returns to scale

Capital Depreciation:  $\delta \in (0,1)$  per period

**Recource Constraint:**  $C + K' = F(K, L) + (1 - \delta)K$ 

**Factor Prices** (determined in equilibrium):

- ▶ Wage:  $w = F_L(K, L) = (1 \alpha)K^{\alpha}L^{-\alpha}$
- ▶ Rental rate:  $r^k = F_K(K, L) \delta = \alpha K^{\alpha 1} L^{1 \alpha} \delta$



### Household Problem

#### Preferences:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

**Individual State**:  $(k, \varepsilon)$  where

- ➤ a: individual capital holdings (assets)
- y: idiosyncratic productivity shock

#### **Productivity Process:**

- ►  $y \in \mathcal{Y} = \{y_1, y_2, \dots, y_N\}$
- Markov chain with transition matrix Π
- ightharpoonup Stationary distribution  $\pi$

### **Budget Constraint:**

$$c + a' = wy + (1+r)a$$

Borrowing Constraint:  $a' \ge -\phi$ 



### Interpretation of y

y represents productivity/efficiency, so:

- When agent has shock y, they supply y efficiency units of labor
- ► Highery ⇒ more productive worker ⇒ higher effective labor supply
- ► This could represent: skill differences, health shocks, match quality with employer, etc.

**Think of it as:** Effective Labor= $y \times h$  where h = 1 (hours worked, normalized)

Aggregate labor constant (in steady state):  $L = \mathbb{E}[y]$ 



## Household's Bellman Equation

Taking aggregate capital K and labor L as given, the household solves:

$$V(a, y; K, L) = \max_{c, a'} \left\{ u(c) + \beta \sum_{y' \in \mathcal{Y}} \Pi(y, y') V(a', y'; K, L) \right\}$$

subject to:

$$c + a' = w(K, L)y + (1 + r(K, L))a$$
  
 $a' \ge -\phi$   
 $c \ge 0$ 

where w(K, L) and r(K, L) are equilibrium factor prices.

# **Policy Functions**

**Solution**: Policy functions depend on aggregate state

 $g_a(a, y; K, L)$ : capital choice  $g_c(a, y; K, L)$ : consumption choice

First Order Condition (when  $a' > -\phi$ ):

$$u'(c) = \beta(1 + r(K, L)) \sum_{y' \in \mathcal{Y}} \Pi(y, y') u'(c')$$

#### **Key Properties**:

- $ightharpoonup g_a(a,y;K,L)$  increasing in a
- $ightharpoonup g_a(a, y; K, L)$  weakly increading in y
- ▶ Constraint  $a' \ge -\phi$  may bind for low (a, y)

## Aggregation

**Distribution**:  $\mu(a, y)$  gives measure of agents with state (a, y)

**Aggregate Capital:** 

$$K = \int a \, d\mu(a, y)$$

Aggregate Labor:

$$L = \int y \, d\mu(a, y) = \sum_{j=1}^{N} y_j \pi_j$$

Note: Aggregate labor is constant in steady state (depends only on  $\pi$ ).

Law of Motion for Distribution:

$$\mu'(X,y') = \sum_{y \in \mathcal{Y}} \Pi(y,y') \int \mathbb{I}\{g_a(a,y;K,L) \in X\} \mu(da,y)$$

## Market Clearing Conditions

#### 1. Capital Market Clearing:

$$K' = \int g_a(a, y; K, L) d\mu(a, y)$$

Aggregate capital supply (household savings) = Aggregate capital demand (by firms)

### 2. Labor Market Clearing:

$$L = \int y \, d\mu(a,y)$$

Aggregate labor supply = Aggregate labor demand

### 3. Goods Market Clearing:

$$\int c(a,y;K,L) d\mu(a,y) + K' = F(K,L) + (1-\delta)K$$

This is just the resource constraint.

Note: If two markets clear, the third clears automatically.



### Factor Price Determination

Perfect Competition: Firms take factor prices as given and maximize profits

Firm's Problem:

$$\max_{K^d,L^d} F(K^d,L^d) - r^k K^d - wL^d$$

First Order Conditions:

$$r^{k} = F_{K}(K, L) - \delta = \alpha K^{\alpha - 1} L^{1 - \alpha} - \delta$$
  

$$w = F_{L}(K, L) = (1 - \alpha) K^{\alpha} L^{-\alpha}$$

**No-Arbitrage**:  $r = r^k$  (return on capital = interest rate)

**Key Insight**: Factor prices depend on aggregate quantities (K, L), which are determined by household decisions in equilibrium.

# Definition: Stationary Recursive Competitive Equilibrium

A Stationary Recursive Competitive Equilibrium consists of:

- **1. Value and Policy Functions**: V(a, y),  $g_a(a, y)$ ,  $g_c(a, y)$
- 2. Factor Prices: r, w
- 3. Aggregate Quantities: K, L
- **4. Stationary Distribution**:  $\mu^*(a, y)$

such that:

## **Equilibrium Conditions**

- (i) Household Optimization: V,  $g_a$ ,  $g_c$  solve the household's Bellman equation
- (ii) Firm Optimization: Factor prices satisfy

$$r = \alpha K^{\alpha - 1} L^{1 - \alpha} - \delta$$
$$w = (1 - \alpha) K^{\alpha} L^{-\alpha}$$

(iii) Market Clearing: (in a stationary equilibrium K = K')

$$K = \int g_a(a, y) d\mu^*(a, y)$$
 $L = \int y d\mu^*(a, y)$ 

(iv) Consistency:  $\mu^*$  is the stationary distribution implied by policy function  $g_a(a,y)$ 



## Equilibrium Characterization

**Key Feature**: Equilibrium (K, L, r, w) must be **self-consistent** 

#### **Fixed Point Problem:**

- ▶ Given (K, L) ⇒ compute (r, w) from firm FOCs
- ▶ Given (r, w) ⇒ solve household problem for  $g_a(a, y)$
- Given  $g_a(a, y) \Rightarrow$  find stationary distribution  $\mu^*$
- ▶ Given  $\mu^*$  ⇒ compute implied (K', L')
- ▶ Equilibrium: (K', L') = (K, L)

### **Existence and Uniqueness:**

- Existence: Typically guaranteed under standard assumptions
- ▶ Uniqueness: Not guaranteed; multiple equilibria possible

## The Equilibrium Condition

Equilibrium requires: A(r) = K(r)

Capital Demand (from firms): Always downward sloping

$$K(r) = \left(\frac{\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} L$$

Higher  $r \to \text{lower marginal product of capital needed} \to \text{Firms demand less capital}$  Capital Supply (from households): May not be monotonic!

$$A(r) = \int g_a(a, y; r, w(r)) d\mu^*(y; r)$$

- Depends on household saving decisions
- ightharpoonup Distribution  $\mu^*$  is endogenous to r
- Complex interactions possible



## How Does r Affect Household Saving?

When interest rate *r* increases, there are **three competing effects**:

- **1. Substitution Effect** ( $\uparrow r \Rightarrow \uparrow$  saving):
  - ▶ Higher return to saving makes future consumption cheaper
  - Standard price effect: save more
  - ► Increases A
- **2.** Income/Wealth Effect ( $\uparrow r \Rightarrow \downarrow$  saving):
  - Higher returns make savers wealthier
  - Savers increase their assets
  - ► Higher returns make *borrowers* poorer
  - ► Borrowers save less (borrow more)
  - ► Ambiguous effect on *A*, depends on the distribution



## How Does *r* Affect Household Saving?

- **3. Precautionary Motive** ( $\uparrow r \Rightarrow \downarrow \text{ saving}$ ):
  - ▶ Higher *r* means buffer stock assets grow faster
  - ▶ Don't need as large a buffer for same insurance
  - Target wealth level falls
  - Decreases A

#### Intuition:

- At low r: need to hold many assets for precautionary reasons
- ► At high *r*: same insurance value with fewer assets

## Net Effect is Ambiguous

**Total Effect**:  $\frac{dA}{dr} = \text{Substitution} \pm \text{Income} - \text{Precautionary}$ 

#### Possible Outcomes:

- ▶ Substitution dominates and lots of savers: *A* increasing in *r* 
  - Common with high intertemporal elasticity of substitution (IES)
  - Yields unique equilibrium
- Precautionary dominate or lots of borrowers: A decreasing in r
  - Can occur with low IES, high risk aversion
  - Can still yield unique equilibrium (both curves downward)
- **Effects vary with** *r*: *A* non-monotonic
  - Different effects dominate at different interest rates
  - Can lead to multiple equilibria

**Key Insight:** Compared to the Huggett model, here we have a feedback loop through the production function that can lead to non-monotonicity.

# Parameter Configurations Favoring Multiplicity

### More Likely to Have Multiple Equilibria When:

- **1. High Risk Aversion** ( $\gamma$  large):
  - Strong income effects from interest rate changes
  - $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$  with large  $\gamma$

### 2. Very Persistent Income Shocks:

- Autocorrelation close to 1
- Makes precautionary motive very sensitive to interest rates

#### 3. Loose Borrowing Constraints:

- Allows more heterogeneity in responses
- $ightharpoonup \phi$  large (can borrow significantly)

### 4. Low Intertemporal Elasticity of Substitution (IES):

- ▶ Income effects dominate substitution effects
- ▶ IES =  $\frac{1}{2}$  for CRRA utility



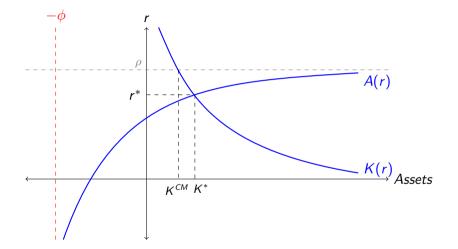
## Parameter Configurations Favoring Uniqueness

### More Likely to Have Unique Equilibrium When:

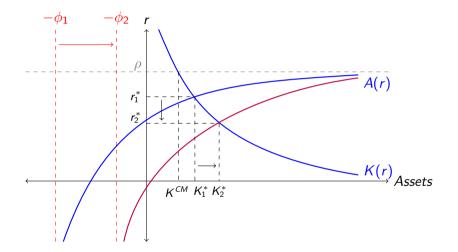
- 1. Log Utility  $(\gamma = 1)$ :
  - ▶ Income and substitution effects cancel exactly
  - ► IES = 1
  - Most robust case for uniqueness
- 2. Low Persistence of Shocks:
  - Weak precautionary motives
  - Less sensitivity to interest rates
- 3. Tight Borrowing Constraints ( $\phi = 0$ ):
  - ► Forces similar saving behavior
  - Reduces heterogeneity in responses
- 4. High IES  $(\gamma < 1)$ :
  - Substitution effects dominate
  - Clear positive relationship between r and A



# Equilibrium (Let's assume A(r) increasing in r)



# Decrease in borrowing $\downarrow \phi$



## The Challenge in Heterogeneous Agent Models

### Individual vs. Aggregate State:

Individual State: (a, y)

- a: individual asset holdings
- ▶ *y*: idiosyncratic productivity shock
- What the household needs to know about itself

### Aggregate State: ???

- What information about the aggregate economy matters?
- ▶ How do individual decisions depend on economy-wide variables?
- ▶ This is where the distribution comes in...

### The Distribution $\mu(a, y)$ :

- ▶ Describes the mass of agents at each state
- ► Evolves over time based on policy functions
- ▶ Is this a state variable we need to track?



# Why the Distribution Matters

#### The distribution $\mu$ affects:

1. Aggregate Capital:

$$K = \int a \, d\mu(a, y)$$

2. Aggregate Labor:

$$L = \int y \, d\mu(a, y)$$

3. Factor Prices:

$$r = \alpha K^{\alpha - 1} L^{1 - \alpha} - \delta$$
$$w = (1 - \alpha) K^{\alpha} L^{-\alpha}$$

**Conclusion**: The distribution fundamentally affects individual decisions through factor prices

# The Full State Space (Conceptually)

#### Theoretically, the complete state is:

Individual State:  $(k, \varepsilon, \mu)$ 

- ► a: own capital
- y: own productivity
- $\blacktriangleright$   $\mu$ : distribution of all agents

#### Value Function:

$$V(a, y, \mu) = \max_{c, a'} \left\{ u(c) + \beta \sum_{y'} \Pi(y, y') V(a', y', \mu') \right\}$$

where  $\mu' = T(\mu)$  is next period's distribution.

#### The Problem:

- $\blacktriangleright$   $\mu$  is an **infinite-dimensional object** (a measure)
- ► Computing this is intractable!
- $\blacktriangleright$  We need a way to avoid tracking  $\mu$  explicitly



## The Curse of Dimensionality

### Why tracking $\mu$ is impossible:

#### Discretization Example:

- ▶ Suppose we discretize:  $a \in \{a_1, \ldots, a_{100}\}, y \in \{y_1, y_2\}$
- ▶ The distribution  $\mu$  has 200 dimensions (mass at each state)
- State space:  $(a, y, \mu_1, \mu_2, \dots, \mu_{200})$
- Value function has 202 arguments!

#### **Computational Nightmare**:

- ► Cannot store or interpolate in 200+ dimensions
- Would need astronomical memory
- Solution time would be prohibitive

### We need a different approach



## Key Insight: Steady State Assumption

#### The Trick: Focus on stationary equilibria

#### Stationary Equilibrium:

- **Distribution** is time-invariant:  $\mu_t = \mu^*$  for all t
- ▶ Aggregate quantities constant:  $K_t = K^*$ ,  $L_t = L^*$
- ► Factor prices constant:  $r_t = r^*$ ,  $w_t = w^*$

#### Implication:

- $ightharpoonup \mu$  is no longer a **dynamic state variable**
- lt becomes an **endogenous outcome** of equilibrium
- ightharpoonup We solve for  $\mu^*$  as part of equilibrium, not as a state

## Overview of Computational Approach

Challenge: Fixed point in distribution space - infinite dimensional object

### **Solution Strategy**:

- 1. **Discretization**: Approximate continuous distributions with finite grids
- 2. Nested Fixed Points:
  - Outer loop: Find equilibrium (K, L)
  - ▶ Inner loop: Solve household problem and find stationary distribution
- 3. **Iteration**: Use fixed point iteration or other numerical methods

### Key Steps:

- Discretize state spaces
- Solve household Bellman equation
- Compute stationary distribution
- Check market clearing
- Update aggregate quantities



## Step 1: Discretization

Capital Grid: 
$$A = \{a_1, a_2, \dots, a_{N_a}\}$$

- Choose  $a_1 = \phi$  (borrowing constraint)
- ▶ Choose  $a_{N_a}$  large enough to be non-binding
- Use non-uniform grids

### Productivity Grid: $\mathcal{Y} = \{y_1, y_2, \dots, y_{N_u}\}$

- ► Can use Tauchen (1986) method to discretize AR(1) process
- Or directly specify finite-state Markov chain

**State Space**: 
$$(a_i, y_j)$$
 for  $i = 1, ..., N_a$  and  $j = 1, ..., N_y$ 

**Total States**:  $N_a \times N_y$  (typically 1000-5000 states)

## Step 2: Solve Household Problem

**Given**: Aggregate state (K, L) and factor prices (r, w)

#### Value Function Iteration:

- 1. Initialize:  $V^{(0)}(a_i, y_j) = 0$  for all (i, j)
- 2. For  $n = 0, 1, 2, \ldots$  until convergence:

$$V^{(n+1)}(a_i, y_j) = \max_{k' \in \mathcal{K}} \left\{ u(wy_j + (1+r)a_i - a') + \beta \sum_{\ell=1}^{N_y} \Pi_{j\ell} V^{(n)}(a', y_\ell) \right\}$$

3. Store optimal policy:  $g_a(a_i, y_j)$ 

Convergence Criterion:  $\max_{i,j} |V^{(n+1)}(a_i, y_i) - V^{(n)}(a_i, y_j)| < \text{tol}$ 

# Step 3: Find Stationary Distribution

**Given**: Policy function  $g_a(a_i, y_j)$ 

**Transition Matrix**: Create  $(N_k \times N_{\varepsilon}) \times (N_k \times N_{\varepsilon})$  matrix Q For state  $(a_i, y_i) \rightarrow (a_{\ell}, y_m)$ :

$$Q_{(i,j),(\ell,m)} = egin{cases} \Pi_{jm} & ext{if } g_{a}(a_{i},y_{j}) = k_{\ell} \ 0 & ext{otherwise} \end{cases}$$

**Stationary Distribution**: Solve  $\mu^*Q = \mu^*$  with  $\sum \mu^* = 1$ 

lterate:  $\mu^{(n+1)} = \mu^{(n)}Q$  until convergence

Alternative: faster methods exist for large state spaces

# Step 4: Check Market Clearing

#### **Compute Aggregate Quantities:**

$$\mathcal{K}' = \sum_{i=1}^{N_a} \sum_{j=1}^{N_y} g_{\mathsf{a}}(a_i, y_j) \mu^*(a_i, y_j)$$

### **Market Clearing Errors**:

$$\operatorname{err}_K = |K' - K|$$

**Convergence Check**: If  $err_K < tolerance$ , then STOP.

Otherwise, update K and repeat.

# Step 5: Update Algorithm

### Simple Updating:

$$K^{(n+1)} = \lambda K' + (1 - \lambda)K^{(n)}$$

where  $\lambda \in (0,1)$  is a damping parameter (typically 0.1-0.3)

#### **Alternative Methods:**

- ▶ **Bisection**: If only solving for *K* (since *L* is often fixed)
- Newton-Raphson: Compute derivatives numerically
- ▶ Anderson Acceleration: Faster convergence for smooth problems

#### **Initial Guess:**

- Start with complete markets capital stock:  $K_0 = \left(\frac{\alpha}{\rho + \delta}\right)^{\frac{1}{1 \alpha}} L$
- Or use solution from simpler model (e.g., representative agent)

## Complete Algorithm

### Algorithm 1 Aiyagari Model Solution

- 1: **Initialize**: Grid A, transition matrix  $\Pi$ , guess  $(K^{(0)})$
- 2: Set n = 0
- 3: repeat
- 4: Compute factor prices:  $r^{(n)} = \alpha (K^{(n)})^{\alpha-1} (L)^{1-\alpha} \delta$
- 5:  $w^{(n)} = (1 \alpha)(K^{(n)})^{\alpha}(L)^{-\alpha}$
- 6: Solve household problem: VFI to get V,  $g_a(a, y)$
- 7: Find stationary distribution  $\mu^*$
- 8: Compute implied aggregates:
- 9:  $K' = \sum_{i,j} g_a(a_i, y_j) \mu^*(a_i, y_j)$
- 10: Check convergence:  $|K' K^{(n)}| < \text{tol}$
- 11: Update:  $K^{(n+1)} = \lambda K' + (1 \lambda)K^{(n)}$
- 12: n = n + 1
- 13: until convergence
- 14: **Return**: Equilibrium  $(K^*, L^*, r^*, w^*)$ , policy functions, distribution



## What We Can and Cannot Analyze

#### Steady State Approach CAN Answer:

- ► Long-run wealth distribution
- Steady-state capital stock and interest rate
- Welfare in stationary equilibrium
- ► Comparative statics (how equilibrium changes with parameters)

### **Steady State Approach CANNOT Answer**:

- Transitional dynamics after policy change
- Business cycle fluctuations
- ► Time-varying distributions
- Response to aggregate shocks

### For dynamics, need different approaches:

- Perfect foresight transitions
- ► Krusell-Smith (1998) method
- Sequence space methods



### Main Quantitative Results

### **Capital Over-Accumulation:**

- ▶ Aiyagari finds  $K^* > K^{CM}$  (complete markets benchmark)
- ▶ Over-accumulation of 10-40% depending on parameters
- $ightharpoonup r^* < 
  ho$  due to precautionary saving

#### Interest Rate:

- Equilibrium interest rate below time preference rate
- $ightharpoonup r^* = MPK \delta < \rho$
- Gap depends on strength of precautionary motive

#### Wealth Distribution:

- ► Highly concentrated: top 20% hold 80-90% of wealth
- ▶ Many agents at borrowing constraint (k = 0)
- ► Realistic Gini coefficients (0.6-0.8)



### Welfare Analysis

### **Competing Effects:**

#### 1. Over-accumulation Cost:

- ► Too much capital ⇒ too little consumption
- ▶ Resources wasted on "excessive" investment
- ▶ Golden rule:  $MPK = \rho$  for optimal steady state

#### 2. Insurance Benefit:

- ► Higher capital stock ⇒ higher wages
- ▶ Partial self-insurance through asset accumulation
- Reduces consumption volatility

#### Net Effect:

- ► Typically, over-accumulation cost dominates
- ▶ But welfare losses are small (1-2% of consumption)
- ▶ Depends on risk aversion, productivity variance, etc.



## Modern Applications

#### 1. HANK Models:

- ► Heterogeneous Agent New Keynesian models
- ► Kaplan, Moll, Violante (2018), others
- Monetary policy transmission through wealth distribution

#### 2. Inequality and Growth:

- Endogenous skill formation and human capital
- Entrepreneurship with borrowing constraints
- Innovation and R&D with heterogeneous firms

# Practical Implementation Tips

#### 1. Grid Construction:

- Use more grid points near borrowing constraint
- lacksquare Exponential spacing:  $a_i = a_{\sf max} \left(rac{i-1}{N_a-1}
  ight)^
  u$  with u>1
- Check that maximum grid point is not binding in equilibrium

#### 2. Interpolation:

- Use linear interpolation for policy functions on off-grid points
- Higher-order interpolation can cause oscillations
- Monotonicity-preserving splines if needed

#### 3. Convergence:

- ▶ Use tight tolerance for VFI  $(10^{-6} \text{ or smaller})$
- ▶ Looser tolerance for outer loop  $(10^{-4})$
- Monitor convergence patterns should be monotonic



## Summary

### Key Contributions of Aiyagari Model:

- Integrates heterogeneous agents with general equilibrium
- Shows how incomplete markets affect aggregate outcomes
- Provides framework for quantitative policy analysis

#### Main Insights:

- Precautionary saving leads to capital over-accumulation
- Incomplete insurance creates trade-offs for policy
- Distribution matters for aggregate quantities

#### Computational Legacy:

- Standard solution method for heterogeneous agent models
- ► Foundation for modern HANK models
- Continues to drive methodological innovations

