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Suppose that n buyers each want one unit and m sellers each have
one or more units of a good. Sellers post prices, and then buyers
choose sellers. In symmetric equilibrium, similar sellers all post one
price, and buyers randomize. Hence, more or fewer buyers may arrive
than a seller can accommodate. We call this frictions. We solve for
prices and the endogenous matching function for finite n and m and
consider the limit as n and m grow. The matching function displays
decreasing returns but converges to constant returns. We argue that
the standard matching function in the literature is misspecified and
discuss implications for the Beveridge curve.

I. Introduction

We analyze a market in which n buyers each want to buy one unit and
m sellers each want to sell one or more units of an indivisible good.
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comments. The National Science Foundation and the Social Sciences and Humanities
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First sellers set prices, and then each buyer chooses which seller to visit.
There is no search problem in the traditional sense because buyers know
the price and the capacity of each seller with certainty.1 Still, in equi-
librium, there is a chance that more buyers will show up at a given
location than the seller can accommodate, in which case some customers
get rationed; simultaneously, fewer buyers may show up at another lo-
cation than the seller there can accommodate, in which case the seller
gets rationed. This is what we call frictions. We are interested in the
relationship between these frictions and pricing decisions and in the
number of successful matches between buyers and sellers.

We derive the closed form for the equilibrium prices and matching
function with the numbers of buyers and sellers, n and m, as arguments
and compare the results to predictions of other models. In the case of
homogeneous sellers, for example, in a symmetric equilibrium, they all
charge the same price p, and all buyers choose a seller at random (in
some sense endogenizing the meeting process that is simply assumed
in the more traditional search literature). In the limit, as n and m get
big, p converges to the price generated by a simplified version of the
model that is standard in the literature. However, for finite n and m,
the standard version does not give the correct answer. In terms of our
endogenous matching function, for finite n and m, it exhibits decreasing
returns to scale—that is, frictions get worse as the market gets
thicker—but as the market grows, it converges to a function with con-
stant returns.

Sellers here can be thought of as offering combinations of a price
and a probability of service. There is much related work in the literature;
examples include Butters (1977), Montgomery (1991), Peters (1991,
2000), McAfee (1993), Burdett and Mortensen (1998), Coles and Eeck-
hout (2000a, 2000b), Lagos (2000), and Mortensen and Wright (in
press). Indeed, our model with two sellers and two buyers is isomorphic
to Montgomery’s model, where he has two workers and two firms. How-
ever, the analyses differ in our model and the version ofn # m n # m
his model. Intuitively, we take into account explicitly the strategic in-
teraction between sellers, whereas previous analyses following Mont-
gomery assume that each firm sets a price or wage taking as given some
measure of aggregate market conditions (see also Lang 1991; Shimer
1996; Moen 1997; Acemoglu and Shimer 1999a, 1999b). Again, the two
methods give different answers for finite n and m, but we show that they
converge to the same limit as the market grows.

We also allow sellers to differ in capacity, exogenously in one version
of the model and endogenously in another version. This leads to several

1 In the literature these days, this is called directed rather than undirected search; see the
references below.
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new insights. For example, the effect on prices of an increase in supply
can be different depending on whether this increase occurs along the
intensive or the extensive margin (i.e., a change in the number of goods
per seller or a change in the number of sellers). Moreover, we show
that the matching function depends not only on the number of buyers
and the number of goods for sale but also on the distribution of those
goods across sellers. For example, it makes a difference if there is one
large seller or many small sellers. As with the effect on prices, we show
that the effect of an increase in supply on the number of successful
matches in equilibrium can be different depending on whether it occurs
along the intensive or the extensive margin.

This suggests that the standard matching function used in the liter-
ature is misspecified. In the typical labor market application, as in Pis-
sarides (1990) or Mortensen and Pissarides (1994), for example, job
creation depends on the number of unemployed workers and the num-
ber of vacancies. Our results imply that it should also depend on whether
there are many firms each with a few vacancies or a few firms with many
vacancies. This allows us to propose a new explanation of the shifts in
the Beveridge curve (the locus of observed points in vacancy-unem-
ployment space) documented by Blanchard and Diamond (1989) and
Jackman, Layard, and Pissarides (1989). Our explanation is that these
shifts may be due to changes in the firm-size distribution. In fact, the
relative number of small firms has increased over time (Stanworth and
Gray 1991), which in our model would imply the observed shifts in the
Beveridge curve.

The rest of the paper is organized as follows. Section II examines the
case of two homogeneous buyers and two sellers, each with unit capacity.
Section III presents results for the case with n buyers and m sellers, still
with unit capacity. Section IV describes the alternative and more stan-
dard method for analyzing these kinds of models and shows that it gives
the wrong answer for finite n and m but the right answer in the limit.
Section V extends the framework to allow sellers to differ in capacity
and discusses the difference between changes in supply along the in-
tensive and extensive margins in terms of the implications for prices
and the matching function. Section VI presents some brief concluding
remarks.

II. The 2#2 Case

In general there are n buyers and m sellers, but we begin with n p
Label the buyers 1 and 2 and the sellers A and B. Each buyerm p 2.

wants to buy one unit of an indivisible good and is willing to pay up to
his reservation price, which is normalized to one. If he buys at price p,
he obtains utility ; if he does not buy, he obtains zero. Foru p 1 � p
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now sellers are homogeneous, and each wants to sell one unit at a price
above his reservation price of zero. If he sells at price p, he obtains
payoff ; if he does not sell, he obtains zero.p p p

The process of exchange proceeds in two stages. First, each seller j
posts a price pj taking as given the price of his competitor (more gen-
erally, his competitors). At the second stage, each buyer choosesm � 1
a probability of visiting each seller, taking as given prices and the strat-
egies of other buyers. If two or more buyers show up at the same location,
the good is allocated randomly at the posted price.2 Let vi be the prob-
ability that buyer i visits seller A and the probability that he visits1 � vi

B. Let Uij be his expected payoff if he visits seller j and U pi

To compute Ui, observe that if buyer 1 visits seller A, hismax {U , U }.iA iB

expected payoff is times the probability that he gets served. If1 � pA

buyer 2 also visits A, which occurs with probability v2, buyer 1 gets served
with probability one-half; if buyer 2 does not visit A, buyer 1 gets served
for sure. So

v2 1U p � 1 � v (1 � p ) p (2 � v )(1 � p ).1A 2 A 2 A( ) 22

Similarly, Buyer 2’s payoffs are symmetric.1U p (1 � v )(1 � p ).1B 2 B2
Consider the second-stage game. By comparing U1A and U1B taking v2

and (pA, pB) as given, we see that the best response of buyer 1 is to go
to seller A with probability

0 if v 1 v(p , p )2 A B

v p 1 if v ! v(p , p ) (1)1 2 A B{[0, 1] if v p v(p , p ),2 A B

where

1 � p � 2pB A
v(p , p ) p .A B 2 � p � pA B

Buyers 2’s best response is symmetric. Notice that a buyer does not
necessarily go to the seller with a lower price since the probability of
rationing needs to be taken into account. In any case, equilibrium in
the second-stage game is as follows. First, if the uniquep ≥ (1 � p )/2,A B

equilibrium is (both buyers go to B). Second, if(v , v ) p (0, 0) p ≤1 2 A

the unique equilibrium is (both go to A). Fi-2p � 1, (v , v ) p (1, 1)B 1 2

nally, if there are exactly three equilibria: two12p � 1 ! p ! (1 � p ) ,B A B2

2 By assumption, a buyer who is rationed cannot sample a second location within the
period, but the basic message depends only on there being some cost to doing so. Also,
we assume that sellers cannot make price contingent on how many buyers show up. Coles
and Eeckhout (2000a) generalize the model so that sellers are allowed to condition prices
on the number of buyers and show that there is always an equilibrium in which prices do
not depend on the number of buyers; hence, this restriction is not binding.
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Fig. 1

pure-strategy equilibria, and plus a(v , v ) p (0, 1) (v , v ) p (1, 0),1 2 1 2

mixed-strategy equilibrium, (see fig. 1).v p v p v(p , p )1 2 A B

Consider now the first-stage game. The expected profit of seller A is
as follows. If then (since he gets both customersp ≤ 2p � 1, p p pA B A A

for sure); if then (since he gets no customers);1p ≥ (1 � p ), p p 0A B A2
and if then, since there are multiple equilibria12p � 1 ! p ! (1 � p ),B A B2
at the second stage, there are two possibilities. If buyers play either of
the two pure-strategy equilibria, then ; and if buyers play thep p pA A

mixed-strategy equilibrium, then

3(1 � p )(1 � p � 2p )B B A
p p p . (2)A A 2(2 � p � p )A B

If buyers play the mixed-strategy equilibrium at the second stage, the
best response and profit function of seller A to the pricing decision of
B are given by

(2 � p )(1 � p )B B∗p (p ) p (3)A B 7 � 5pB

and

2(1 � p )B∗p (p ) p . (4)A B 4(2 � p )B

The conditional (on being in the mixed-strategy equilibrium at the
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Fig. 2

second stage) best response and profit functions of B are derived
symmetrically.

Figure 2 shows the conditional best response and profit functions. It
is easily verified that and are upward-sloping and convex, and∗ ∗p pA A

lies above as shown. Clearly, and are mirror images of∗ ∗ ∗ ∗ ∗p p , p p pA A B B A

and Also, and intersect at whereas and intersect1 1∗ ∗ ∗ ∗ ∗p . p p ( , ), p pA A B A B2 2
at Also, given pB, note that if seller A sets then his1 1 ∗( , ). p p p (p ),A A B5 5
expected profit is no less than no matter what happens at the∗p (p ),A B

second stage: he earns if buyers play the mixed-strategy∗p p p (p )A A B

equilibrium and if buyers play a pure-strategy equilibrium.∗p p pA A

These results are useful for establishing the following proposition.
Proposition 1. A pair (pA, pB) is an equilibrium in the pricing game

iff it is in the shaded region in figure 2 between and∗p p p (p )A A B
∗p p p (p ).B B A

Proof. First suppose that (pA, pB) is such that Since expected∗p ! p .A A

profit for seller A is no more than pA in any equilibrium and no less
than in any equilibrium in which he sets he has a profitable∗ ∗p p ,A A

deviation (no matter what equilibrium is played at the second stage).
Hence, (pA, pB) cannot be an equilibrium if it is below the curve. By∗pA

symmetry, there is no equilibrium to the left of the curve. Therefore,∗pB

any equilibria must be in the shaded region. We now show that any (pA,
pB) in this region is an equilibrium, with the following features. At the
second stage the buyers play pure strategies along the equilibrium
path—that is, on observing (pA, pB), one buyer goes to seller A and the
other goes to B with probability one—and if there is any deviation by
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a seller, at the second stage they play ifv p v p 1 p ≤ 2p � 1, v p1 2 A B 1

if and if1 1v p 0 p ≥ (1 � p ), v p v p v(p , p ) 2p � 1 1 p 1 (1 �2 A B 1 2 A B B A2 2
where was defined immediately after (1).p ), v(p , p )B A B

Clearly, buyers’ strategies constitute equilibrium at the second stage
after a deviation (recall fig. 1). If there is no deviation, buyers play pure
strategies, which implies and Consider a deviation byp p p p p p .A A B B

seller A, to say. There are three cases to consider. (1) Ifd dp , p ≤ 2p �A A B

then at the second stage we must have and therefore1, v p v p 11 2

This is not a profitable deviation. (2) If 1dp ≤ 2p � 1 ! p . p ≥ (1 �A B A A 2
then and therefore This is not a profitablep ), v p v p 0 p p 0 ! p .B 1 2 A A

deviation. (3) If then The1d d2p � 1 ! p ! (1 � p ), v p v p v(p , p ).B A B 1 2 A B2
best deviation of this sort is which gen-dp p [(2 � p )(1 � p )]/(7 � 5p ),A B B B

erates profits Hence, there is no profitable deviation for sellerp ! p .A A

A. By symmetry there is no profitable deviation for B. This completes
the proof. Q.E.D.

The set of equilibria can be partitioned into the case in which
and buyers play mixed strategies at the second stage,1 1(p , p ) p ( , )A B 2 2

and a large set of prices (pA, pB) in which buyers play pure strategies
and each goes to a different seller with probability one.3 All of these
except are sustained by an implicit threat from the market:p p p p 1A B

starting at any (pA, pB) in the relevant region, if a seller changes his
price, buyers trigger to the mixed-strategy equilibrium. Since the mixed-
strategy equilibrium is bad for sellers, they will not deviate by adjusting
their price. The case is different. In this case, if a sellerp p p p 1A B

deviates by lowering his price by any both customers come to hime 1 0,
with probability one; there is no incentive for him to do so, however,
since he is already getting one buyer with probability one, which ex-
hausts his capacity.

All these pure-strategy equilibria require a lot of coordination, in the
sense that every buyer has to somehow know where every other buyer
is going. This may not be so unreasonable when but it seemsn p m p 2,
hard to imagine for general n and m, which is what we want to consider
below. Moreover, in the equilibria supported by threats, buyers have to
also coordinate on where to trigger after a deviation, which is even
harder to imagine in a large market. The case does notp p p p 1A B

have this latter difficulty since it is not supported by triggers; however,
this case is not particularly robust. Suppose, as a simple example, that
we introduce just a little noise: when seller j tries to set pj, the price that
actually gets posted is uniformly distributed on For ar-(p � e , p � e ).j j

bitrarily small it is not an equilibrium for seller A to sete 1 0, p p 1B A

3 Note that the set of equilibrium prices is larger than the area between the conditional
best-response functions in fig. 2; in fact, it is the area between the profit functions.
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because with probability one-half we have and this impliesp ! 1,B

p p 0.A

The only other equilibrium is the one in which at the second stage
each buyer picks a location at random and as shown by1p p p p ,A B 2
the intersection of the conditional best response functions in figure 2.
This equilibrium requires no coordination whatsoever; indeed, since
buyers pick sellers at random, this in some sense endogenizes the meet-
ing process that is simply assumed in the standard undirected search
literature. Another property of this equilibrium is that it is the unique
symmetric equilibrium (symmetric in the sense that andv p v p p1 2 A

). Also, this equilibrium is robust to perturbations such as introducingpB

noise. All these considerations, as well as the fact that it generates in-
teresting implications, suggest that in the general models presented
below, it is worth concentrating on symmetric equilibria in which buyers
randomize.

We say that these equilibria are characterized by frictions in the sense
that with positive probability one seller gets more customers whereas
another gets fewer than he can service (Lagos [2000], e.g., uses the
term similarly). Of course, an equilibrium with frictions fails to maximize
the total available surplus: in this example, the number of possible
successful matches is two, but the expected number in the mixed-strategy
equilibrium is 1.5. Notice, however, that the equilibrium actually does
remarkably well, in the following sense. Given that both buyers go to
seller A with some arbitrary probability v, the probability that two will
show up at the same location is In equilibrium,12 2v � (1 � v) ≥ .

2
which minimizes this probability. Also notice that, though the1∗v p ,

2
total surplus is lower, buyers actually do better in this equilibrium than
they do in the only other equilibria that are not supported by triggers,
that is, those with wherep p p p 1, U p U p 0.A B A B

III. The n#m Case

Suppose now that there are n buyers and m sellers. As discussed above,
we focus on symmetric equilibria in which all sellers charge the same
price and all buyers use the same mixed strategy. Given that all sellers
post the same p, the mixed strategy each buyer uses must be to visit all
sellers with equal probability, since otherwise a given buyerv p 1/m,
would deviate by going to a seller that has the lowest expected number
of customers. We have the following results.

Proposition 2. The unique symmetric equilibrium has every buyer
visit each seller with probability and all sellers set∗v p 1/m,
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nm � m{1 � [n/(m � 1)]}[1 � (1/m)]∗p p p(m, n) p . (5)nm � {m � [n/(m � 1)]}[1 � (1/m)]

Proof. To begin, let F be the probability that at least one buyer visits
a particular seller when all buyers visit him with the same (but arbitrary)
probability v. Since is the probability that all n buyers go else-n(1 � v)
where, Next, let Q be the probability that a givennF p 1 � (1 � v) .
buyer gets served when he visits this seller. Since the probability of
getting served conditional on visiting this seller times the probability
that this buyer visits him equals the probability that this seller serves
the particular buyer, we have HenceQv p F/n.

nF 1 � (1 � v)
Q p p . (6)

nv nv

Now suppose that every seller is posting p, and one contemplates
deviating to pd. Let the probability that any given buyer visits the deviant
be vd. Then the probability that he visits each of the nondeviants is

By (6), a buyer who visits the deviant gets served withd(1 � v )/(m � 1).
probability

d n1 � (1 � v )
dQ p , (7)dnv

and a buyer who visits a nondeviant gets served with probability
d n1 � {1 � [(1 � v )/(m � 1)]}

Q p . (8)dn[(1 � v )/(m � 1)]

In a symmetric equilibrium in the second-stage game, buyers are indif-
ferent between visiting the deviant and any other seller: Q(1 � p) p

When we insert Q and Qd and rearrange, this conditiond dQ (1 � p ).
becomes

d d n1 � p (1 � v )[1 � (1 � v ) ]
dp { W(v ). (9)d d d n1 � p (m � 1)v (1 � {1 � [(1 � v )/(m � 1)]} )

Notice that is a strictly decreasing function withdW(v )

n/(m � 1)
dlim W(v ) p ≥ 1,n

d 1 � {1 � [1/(m � 1)]}v r0

1
dlim W(v ) p . (10)

d nv r1

Hence, whenever there is a uniquedW(1) ! (1 � p)/(1 � p ) ! W(0),
that makes buyers indifferent between sellersd d dv p v (p , p) � (0, 1)

posting p and pd. If is too small or too big, nod d(1 � p)/(1 � p ) v �
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makes buyers indifferent, and either all or no buyers visit the(0, 1)
deviant. Hence,

1 � p
0 if 1 W(0)d1 � p

1 � p
dv p 1 if ! W(1) (11)d1 � p{

d dv (p , p) otherwise.

Expected profit of the deviant is whered d d np(p , p) p p [1 � (1 � v )] ,
vd is given by (11). Clearly, the best deviation satisfies and hencedp 1 0
satisfies the first-order condition

d�p �v
d n d d n�1p 1 � (1 � v ) � p n(1 � v ) p 0. (12)d d�p �p

Assuming we can differentiate (11) and then insert thedv � (0, 1),
symmetric equilibrium conditions and to derived dp p p v p 1/m

d 2 n�v �(m � 1) {1 � [(m � 1)/m] }
p . (13)d 2 n�p m {(m � n � 1)[(m � 1)/m] � m � 1}(1 � p)

Inserting this into (12) and solving, we arrive at (5). As remarked above,
given that all sellers post p, buyers must visit each with the same prob-
ability This completes the proof. Q.E.D.∗v p 1/m.

Figure 3 shows the level sets, or isoprice curves, and a three-dimen-
sional plot of Naturally, price is increasing in n and de-∗p p p(m, n).
creasing in m, and as whereas as Notice that∗ ∗p r 1 n r � p r 0 m r �.

does not jump discontinuously from the monopsony price to the∗p
monopoly price as the buyer-seller ratio crosses 1, as would beb p n/m
predicted by the simplest frictionless model, so there is a sense in which
frictions smooth things out.4 One can also ask how the price varies with m
when the buyer-seller ratio b is kept fixed. One can verify that falls∗p
with m in a sellers’ market (where b is relatively large) and rises with m
in a buyers’ market (where b is small); see Cao and Shi (2000) for more
discussion. However, in either case, p converges to a very simple limit
as the market grows.

Proposition 3. Let be fixed. Then the limit of whenb p n/m p(m, n)
m, isn r �

4 By a frictionless model we mean the simplest Walrasian model in which p is zero or
one as n is above or below m. Of course, some Walrasian models with indivisible goods
(and no other frictions) predict that prices vary smoothly with n and m once randomization
is introduced via lotteries or sunspots (see, e.g., Rogerson 1988; Shell and Wright 1993).
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b
p̄ p 1 � . (14)be � 1

Proof. Eliminating from (5), we haven p bm
mbm � 1 � [m(b � 1) � 1][(m � 1)/m]∗p p . (15)mbm � 1 � (m � b � 1)[(m � 1)/m]

Taking the limit (which, if one has any trouble, can easily be done using
a symbolic package such as Maple) yields the result. Q.E.D.

Given equilibrium values of other variables can now be com-p(m, n),
puted. For example, expected profit and utility are

n1∗p p p(m, n) p 1 � 1 � p(m, n) (16)( )[ ]m

and
nm 1∗U p U(m, n) p 1 � 1 � [1 � p(m, n)]. (17)( )[ ]n m

As m gets large with b held fixed, these converge to p̄ p 1 � (1 �
and We are especially interested in the expected number�b �b¯b)e U p e .

of sales, or successful buyer-seller matches,
n1∗M p M(m, n) p m 1 � 1 � . (18)( )[ ]m

This is the equilibrium matching function, analogous to the specification
in search models of the labor market, where the number of worker-firm
meetings depends on vacancies and unemployment, as in Pissarides
(1990) or Mortensen and Pissarides (1994), for example. Figure 4 shows
the level sets, or isomatching curves, and a three-dimensional plot of

∗M p M(m, n).
The probability of a successful match for an individual, which can be

thought of as his arrival rate, is for a buyer andA p M(m, n)/n A pb s

for a seller. If we fix then it is easy to see that theM(m, n)/m n/m p b,
arrival rates are decreasing in m. This means that exhibits de-M(m, n)
creasing returns to scale or, in other words, that there is more friction in
bigger markets. However, Ab and As converge to and�b(1 � e )/b 1 �

which means that we have approximately constant returns, when m�be ,
is large. Also notice that is not homothetic: as seen in figureM(n, m)
4, along the ray the isomatching curves get steeper (flatter)b p n/m,
as m increases when b is large (small). However, the slopes of the iso-
matching curves converge to which depends only on b,b1/(1 � b � e ),
and so is approximately homothetic when m is large.M(n, m)

The functional form in (18) suggests an alternative to the standard
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Fig. 5

Cobb-Douglas specification assumed in most applied work, although
when we return to matching functions below, we shall argue that one
may want to be cautious of any specification of the form InM(n, m).
any case, we close the section by mentioning that, while we are on the
subject of matching models, one can easily add a Pissarides-style entry
condition to the framework. That is, we can determine the number of
sellers endogenously by setting where K is the cost of entryp(m, n) p K,
and is given by (16). Given K and the number of buyers n, entryp(m, n)
determines m and thus all endogenous variables, including the buyer-
seller ratio, price, and expected quantity (see fig. 5).

IV. An Alternative Solution Method

Here we present the analogue of the approach in Montgomery (1991)
and some of the other papers mentioned in the Introduction. The key
to this method is to assume that sellers take as given that they must
offer buyers a certain level of expected utility U, which later we deter-
mine endogenously. Thus, suppose that an individual seller chooses p
and buyers respond by coming to him with probability v; then p and v

must generate an expected utility of at least U if he is to get any cus-
tomers. Recall from Section III that the probability that a seller gets at
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least one buyer is and the probability that a buyer who visitsn1 � (1 � v)
him gets served is ; hence, the seller’s problem isnQ p [1 � (1 � v) ]/nv

nmax p p p[1 � (1 � v) ]

subject to (1 � p)Q ≥ U. (19)

Solving the constraint at equality for p, substituting into the objective
function, and maximizing with respect to v, we arrive at

n�1(1 � v) p U. (20)

Since sellers all take U as given, they all choose the same v and p, and
therefore any possible equilibrium is symmetric and entails v p 1/m.
Inserting this into (20) determines U, and then the constraint in (19)
can be solved for

n�1n[1 � (1/m)]
ap p 1 � . (21)nm{1 � [1 � (1/m)] }

This is not the same as (15). If for example, (21) yieldsn p m p 2,
; whereas we know from (5), and also from Section II, that the1ap p

3
correct answer is 1∗p p .

2
The problem with the method leading to (21) is that it ignores ele-

ments of strategic interaction among sellers. At least for small values of
n and m, it does not really make sense to take U parametrically because
a change in a seller’s price implies a change in the probability that
buyers visit him, a change in the probability that they visit other sellers,
and a change in market utility. Our method takes this into account: in
(9) the left-hand side is the expected utility a buyer gets from visiting
a deviant seller, the right-hand side is the expected utility a buyer gets
from visiting a nondeviant seller, and both sides depend on vd. This is
not the case with the constraint in (19), where the right-hand side is a
fixed number U independent of vd.

Intuitively, our model captures competition for customers among sell-
ers, whereas the method leading to (21) captures only competition
between a seller and the market. One might expect this distinction to
vanish as the market gets big. This is indeed the case: setting n p mb
in (21) and letting we see that which is thea bm r �, p r 1 � [b/(e � 1)],
same as the value for in (14). In other words, the alternative solutionp̄
method outlined in this section gives approximately the correct answer
in large markets.

V. Heterogeneous Sellers

We are interested in what happens where sellers differ. Heterogeneity
in terms of a different quality of goods is easy to handle and potentially
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interesting given that consumers would then have to trade off quality
as well as price and the probability of service.5 However, we are more
interested here in sellers that differ in capacity. We shall first illustrate
what happens with an example and then proceed to the general case.
So, to begin, consider the 2#2 model in which seller A now has the
option of producing a second unit at cost c2, whereas B still has one
unit. Assume that A sets the same price for both units. Intuitively, in
this case we expect since seller A never rations. However, we stillp 1 pA B

expect buyers to go to B with positive probability since he will be cheaper,
even though he may ration.

Generalizing Section II, we can easily show that the symmetric equi-
librium in the second stage is for both buyers to go to seller A with
probability Note that impliesv p (1 � 2p � p )/(1 � p ). p p p v pA B B A B

; B will obviously have to cut his price to compete. The conditional1
reaction functions are

p � 1 pB A
p p , p p . (22)A B4 2 � pB

The solution is which implies Ex-(p , p ) p (.293, .172), v p .707.A B

pected profit for A is and since when A hadp p .414 � c , p p .375A 2 A

only one unit of capacity, he is willing to produce the second unit iff
This may seem low, given that A can in principle corner thec ≤ .039.2

market with a second unit and given that the good is in principle worth
to a buyer; notice, however, that the response of B to capacityu p 1

expansion by A is a rather drastic price cut.
Now suppose that both sellers choose capacity wherek � {0, 1, 2},

the costs of the first and second units are c1 and c2. Given capacity, they
post prices and buyers decide whom to visit, as before. If a symmetric
equilibrium is played once (kA, kB) is determined, payoffs in the capacity
game are described by the matrix

5 Consider the 2#2 case in which the utility from the good of seller A is andu p bA

the utility from B is When we generalize the analysis in Sec. II, the symmetricu p 1.B

equilibrium in the second stage is for both buyers to go to A with probability v p
; the conditional reaction functions are(2b � 1 � p � p )/(1 � b � p � p )B A A B

(2b � 1 � p )(1 � b � p )B Bp p ,A 5 � 2b � 5pB

(2 � b � p )(1 � b � p )A Ap p .B 2 � 5b � 5pA

For instance, when uA falls from 1 to 0.67, pA falls to 0.29, pB increases to 0.57, and customers
respond by visiting the low-quality seller A with probability .42.
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Fig. 6

0, 0 1 � c , 0 2 � c � c , 01 1 2 
0, 1 � c .375 � c , .375 � c .414 � c � c , .086 � c ,1 1 1 1 2 1 

0, 2 � c � c .086 � c , .414 � c � c �c � c , �c � c 1 2 1 1 2 1 2 1 2

where each position (i, j) lists the payoffs to sellers A and B when
and for i, Figure 6 shows the equilibria ink p i k p j j � {0, 1, 2}.A B

(c1, c2) space.6 In terms of economic results, we have the following: If
c2 is much bigger than c1, the unique outcome is ; if c2(k , k ) p (1, 1)A B

is much smaller than c1, then we have or (0, 2). In the(k , k ) p (2, 0)A B

intermediate region these equilibria coexist. We have (k , k ) pA B

or (0, 1) iff and c1 is big. It is never an equilibrium to have(1, 0) c ≥ 12

since this implies but we can get(k , k ) p (2, 2) p p p p 0,A B A B

or (1, 2) when c1 and c2 are small.(k , k ) p (2, 1)A B

It might be interesting to endogenize capacity along these lines in
the general case of n buyers and m sellers. However, to focus more
clearly on some implications for matching, here we assume exogenously
that sellers each have one unit for sale andm � (0, m) m p m �L H

6 To save space, when there are two equilibria that are merely relabelings, such as
and only one is shown in the figure.(k , k ) p (2, 0) (k , k ) p (0, 2),A B A B
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each have two units. We focus on symmetric equilibria, where allmL

high-capacity sellers charge pH and all low-capacity sellers charge pL, and
all buyers visit each high-capacity seller with probability vH and visit each
low-capacity seller with probability vL. We shall solve the model using
the method in Section IV, where sellers take as given the utility U that
they must provide buyers. For finite market size we know that this does
not give the right answer, but we shall see that it converges to the correct
answer as the market gets large, just as in the case of homogeneous
sellers.

To begin the analysis, note that a low-capacity seller solves
nmax p p p [1 � (1 � v ) ]L L L

subject to (1 � p )Q ≥ U, (23)L L

where As this is the same as (19) in the pre-nQ p [1 � (1 � v ) ]/nv .L L L

vious section, the solution satisfies
n�1(1 � v ) p U. (24)L

For a high-capacity seller, one can show that the relevant problem is
n n�1max p p p {2[1 � (1 � v ) ] � nv (1 � v ) }H H H H H

subject to (1 � p )Q ≥ U, (25)L H

where

2
n n�1Q p [1 � (1 � v ) ] � (1 � v )H H HnvH

after a little analysis.7 Substituting from the constraint and maximizing
with respect to vH, we have (compare with [24])

7 A buyer who visits a high-capacity seller gets the good for sure if the seller is visited
by either no other buyers or exactly one other buyer, the probability of which is (1 �

If the seller is visited by other buyers, he randomlyn�1 n�2v ) � (n � 1)v (1 � v ) . k ≥ 2H H H

chooses two to serve, so each buyer gets served with probability 2 21 � (C /C ) p 2/(k �k k�1

Thus a buyer who visits a high-capacity seller gets the good with probability1).
n�1 n�2Q p (1 � v ) � (n � 1)v (1 � v )H H H H

n�1 2
k k n�1�k� C v (1 � v )� n�1 H Hk � 1kp2

2
n n�1p [1 � (1 � v ) ] � (1 � v ) .H HnvH

Hence, profit for a high-capacity seller is

n

n�1 k k n�kp p p nv (1 � v ) � 2 C v (1 � v ) ,�H H H H n H H[ ]
kp2

where the first term in the brackets is the probability that the seller is visited by only one
buyer, and the second is the probability that he is visited by at least two buyers. This
simplifies to the expression in the text.
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n�1 n�2(1 � v ) � v (n � 1)(1 � v ) p U. (26)H H H

When all sellers were homogeneous, we could insert the result v p
into (20) and solve for U. Here we have to solve (24), (26), and1/m

the adding-up condition simultaneously for U, vH, andm v � m v p 1L L H H

vL. The result is the following proposition.
Proposition 4. Consider the model with n buyers and m sellers in

which sellers have one unit for sale and havem � (0, m) m p m � mL H L

two units, and sellers take U parametrically. Let andb p n/m h p
be fixed. Then as n and m grow, we have in the limitm /mH L

b(1 � x)
p p 1 � (27)L (1 � h){exp [(b � bx)/(1 � h)] � 1}

and

[1 � (bx/h)](bx/h)
p p 1 � , (28)H 2 exp (bx/h) � 2 � (bx/h)

where This is the same as the answer one gets by first solvingx p m v .H H

the model for finite n and m taking strategic interaction into account
and then taking the limit.

Proof. Combining (24), (26), and the adding-up condition yields

n�11 � m vH Hn�1 n�2(1 � v ) � v (n � 1)(1 � v ) p 1 � . (29)H H H ( )m � mH

Rewriting this in terms of x, we have

bm�1 bm�2x x x
1 � � (bm � 1) 1 �( ) ( )hm hm hm

bm�1

1 � x
p 1 � . (30)[ ]m(1 � h)

Letting and rearranging, we getm r �

bx b(x � h)
1 � p exp . (31)[ ]h h(1 � h)

There is a unique satisfying (31). Given x, we then solve forx � (0, 1)
U, pH, and pL. From (24) we have

bm�1

1 � x
U p 1 � . (32)[ ]m(1 � h)

Notice that as From the constraints inU r exp [(bx � b)/(1 � h)] m r �.
(23) and (25) we have
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Fig. 7

bm�1[(b � bx)/(1 � h)]{1 � [(1 � x)/m(1 � h)]}
1 � p p (33)L bm1 � {1 � [(1 � x)/m(1 � h)]}

and
bm�1(bx/h){1 � [(1 � x)/m(1 � h)]}

1 � p p . (34)H bm bm�12[1 � (x/mh) ] � (bx/h)[1 � (x/mh)]

Taking the limits yields (27) and (28). As indicated above, this method
neglects the strategic effect that a seller can have on U, but in the
Appendix we consider the model taking into account all relevant stra-
tegic considerations and show that the solutions generated by the two
methods do indeed converge to the same limit as m expands holding
fixed and This is accomplished, even though web p n/m h p m /m.H

cannot actually solve for p when n and m are finite, by showing that the
equilibrium conditions for the finite model converge as to them r �
conditions in the model in which U is taken parametrically. Q.E.D.

Figure 7a depicts the effect of a change h on prices, andx p m v ,H H

Ab.
8 Observe that pH is always above pL, and both prices fall as h goes

8 A value of is used in the figure. To derive Ab in this version of the model, noteb p 1.5
that the probability that a buyer gets served is given by InsertingA p m v Q � m v Q .b H H H L L L

QH and QL and rearranging yields
bm

bm bm�12h x x 1 � h 1 � x
A p 1 � 1 � � x 1 � � 1 � 1 � .b ( ) ( )[ ] { [ ] }b mh mh b m(1 � h)

Taking the limit, we have

2h bx x 1 � h bx � b
A r 1 � exp � � x exp � 1 � exp .b ( ) ( ) ( )[ ] [ ]b h mh b 1 � h
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up, naturally. An increase in h constitutes an increase in available supply
along the intensive margin: there is the same number of sellers but
more of them have high capacity. By contrast, a decrease in b constitutes
an increase in supply along the extensive margin: there are more sellers
per buyer when average capacity is held fixed. Figure 7b shows the
difference in the impact of changes in supply along the two margins
on pH (pL looks similar) and Ab, with the increase in the total available
supply kept the same. The key observation is that both variables are
more responsive to supply changes along the intensive margin; that is,
the price decreases more and the arrival rate for buyers increases more
when we increase the number of goods per seller than when we increase
the number of sellers.

Consider the implications for the typical application to the labor
market, such as Mortensen and Pissarides (1994). Those models assume
that the number of successful meetings between employers and workers
is a function of the number of unemployed workers and the number
of employers with vacancies. Thinking of employers as the analogue of
sellers in our model (they post wages in exchange for jobs), we have
found that it makes a difference whether there are many employers
with one vacancy each or few employers with more than one vacancy.
In other words, the standard specification of the matching function is
incomplete if firms may post more than one vacancy. In particular, the
isomatching curves (recall fig. 4) shift out as we increase the number
of sellers with low capacity, holding the total number of units for sale
fixed. Intuitively, frictions are more problematic when there are more
locations with limited capacity.

These results imply that the number of matches will fall, given the
vacancy and unemployment rates, if the firm-size distribution shifts to-
ward more small firms. That is, the Beveridge curve (the locus of ob-
served vacancy-unemployment pairs) will shift out as the relative number
of small firms increases. It is a matter of fact that the Beveridge curve
has shifted out in the postwar period, as documented by Blanchard and
Diamond (1989) for the United States and by Jackman et al. (1989) for
the United Kingdom. Blanchard and Diamond say that about “half [of
the shift] is due to an unexplained deterministic trend” (pp. 4–5) and
that the evidence suggests that “trend changes in matching, which we
find in our estimation of the matching function for the period 1968 to
1981, account for a good part of this deterministic trend” (pp. 47, 50).
Jackman et al. say that “shifts in the curve reflect the efficiency with
which the labor market matches unemployed workers to job vacancies,
and the outward shift in the UK seems mainly attributable to the fall
in the effectiveness of the unemployed as job seekers” (p. 377).

Our model helps to make sense of these trend shifts to the extent
that the size distribution has shifted toward smaller firms during the
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period. There is evidence to this effect at least for the 1980s (see Stan-
worth and Gray 1991). According to our theory, the relative increase in
the number of small firms means that the efficiency of the matching
technology, as a function of the vacancy and unemployment rates, is
diminished. Hence, our model predicts the observed outward shift in
the Beveridge curve. Of course, one would like to have more evidence
for the shift in the firm-size distribution, and it would be interesting to
measure quantitatively just how much this can account for the shift in
the Beveridge curve, but this goes beyond the scope of the current
project.9

VI. Conclusion

This paper has studied prices and allocations in markets with frictions.
We gave a complete characterization of equilibria for the 2#2 case,
including equilibria supported by triggers. However, we argued that a
particular type of equilibrium—the one in which all sellers set the same
price (conditional on capacity, etc.) and buyers randomize—is the in-
teresting one on which to focus for several reasons: it is symmetric, it
is robust, and it does not require an unreasonable amount of coordi-
nation. We solved for prices in this type of equilibrium for the m#n
case and compared the result to the prediction of a simple alternative
model. These results differ for finite m and n but converge to the same
limit as the market grows. We derived the endogenous matching func-
tion and showed that it exhibits decreasing returns for finite m and n,
although it converges to a function with constant returns as the market
grows.

We also analyzed the situation in which sellers have heterogeneous
capacities. We found that prices and arrival rates for buyers are more
sensitive to changes in supply generated by increasing capacity per seller
than to changes in supply generated by increasing the ratio of sellers
to buyers holding average capacity fixed. This means that the matching
is less efficient when there are more low-capacity sellers, with total supply
held constant. Intuitively, this result arises because there is a greater
coordination problem among buyers when there are more small sellers
(as an extreme case, if there is only one large seller, there are no frictions
in our sense). Given a shift toward relatively more small employers over
time, as the data suggest, we argued that the reasoning above might
help to explain observed shifts in the Beveridge curve documented by
various people. In future research it may be interesting to pursue this

9 We do not provide an explanation here for why the size distribution has changed, or
why it does not become degenerate over time, since this would requires a dynamic story
beyond the scope of this paper. See Shi (2000) for a version of one such model specifically
applied to the labor market. See also Julien, Kennes, and King (2000).
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idea quantitatively using a labor market version of the model that allows
workers and firms to stay in the market for more than one period.

How much unemployment or inefficiency could be explained by such
a model? Perhaps not much if a period is very short and applying for
jobs is very easy: when too many workers show up at some firm today,
the ones who are rationed can just go to another one tomorrow. It is
plausible, however, that in some circumstances applying for jobs is not
easy or costless. Consider a situation in which one has to build up capital
(think of trying to get a job in an industry rather than at an individual
firm) or one has to physically migrate to try to get a job in a particular
region. In Steinbeck’s Grapes of Wrath, people spent a lot of time and
other resources moving around in search of jobs, not knowing how
many other workers would be at any given location. Of course, there
were other problems in that situation, and we are not suggesting that
it was all a coordination failure, but simply that such coordination fail-
ures can be important and that labor market versions of models such
as the one analyzed here may be interesting.

Appendix

Suppose that there are finite numbers of agents: n buyers, mH sellers with two
units, and sellers with one unit. However, here each seller takesm p m � mL H

as given the reaction functions of other agents rather than market utility U, as
in (23) and (25). The goal is to show that the two models give the same answer
when m and n are large.

We look for an equilibrium in which all high-capacity sellers charge pH, all
low-capacity sellers charge pL, and all buyers go to each high-capacity seller with
probability and each low-capacity seller with probability wherev 1 0 v 1 0,H L

The probabilities that a buyer will get served, conditional onm v � m v p 1.H H L L

arriving at a low- and a high-capacity seller, are given by
n1 � (1 � v )L

Q p ,L nvL

2
n n�1Q p [1 � (1 � v ) ] � (1 � v ) . (A1)H H HnvH

Since buyers visit all sellers with positive probability, we require (1 � p )Q pH H

or(1 � p )Q ,L L

n1 � p (1/nv )[1 � (1 � v ) ]H L L
p . (A2)n n�11 � p (2/nv )[1 � (1 � v ) ] � (1 � v )L H H H

Now suppose that we are in such an equilibrium, and consider a deviation
by one seller. First, consider a high-capacity seller who deviates to Let bed dp . vH H

the probability that a buyer visits the deviant, where
dv � (m � 1)v � m v p 1. (A3)H H H L L

If he visits the deviant, a buyer gets served with probability
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2
d d n d n�1Q p [1 � (1 � v ) ] � (1 � v ) . (A4)H H HdnvH

Given that we settle on an equilibrium in which buyers go to all sellers with
positive probability, we require ord d(1 � p )Q p (1 � p )Q ,H H H H

d d n d n�11 � p (2/nv )[1 � (1 � v ) ] � (1 � v )H H H H
p , (A5)d n n�11 � p (2/nv )[1 � (1 � v ) ] � (1 � v )H H H H

in addition to (A2).
Conditions (A3), (A5), and (A2) implicitly define a function dv pH

Taking this function and as given, the deviant high-d dv (p ; p , p ). (p , p )H H H L H L

capacity seller seeks to maximize

d d d n d d n�1p p p {2[1 � (1 � v ) ] � nv (1 � v ) }. (A6)H H H H H

Note that this is the same as the objective function in (25), but here the seller
takes into account the reaction function rather than thed d dv p v (p ; p , p )H H H H L

constraint that buyers have to receive expected utility of at least U. An interior
solution satisfies

d d d�p �p �vH H H
� 7 p 0. (A7)d d d�p �v �pH H H

Similarly, consider a low-capacity seller who deviates to Let be the prob-d dp . vL L

ability that a buyer visits the deviant, where

dv � m v � (m � 1)v p 1. (A8)L H H L L

Given that we settle on an equilibrium in which buyers go to all sellers with
positive probability, we require ord d(1 � p )Q p (1 � p )Q ,L L L L

d d n1 � p (1/nv )[1 � (1 � v ) ]L L L
p , (A9)d n1 � p (1/nv )[1 � (1 � v ) ]L L L

in addition to (A2). Conditions (A8), (A9), and (A2) implicitly define dv pL

Taking this and as given, the deviant low-capacity sellerd dv (p ; p , p ). (p , p )L L H L H L

seeks to maximize

d d d np p p [1 � (1 � v ) ]. (A10)L L L

An interior solution satisfies

d d d�p �p �vL L L
� 7 p 0. (A11)d d d�p �v �pL L L

A symmetric mixed-strategy equilibrium is a list satisfying the(p , p , v , v )H L H L

first-order conditions for high- and low-capacity sellers (A7) and (A11), the
condition (A2), which makes buyers indifferent between visiting the two types
of sellers, and the identity all evaluated at d d d dm v � m v p 1, (p , p , v , v ) pH H L L H L H L

This system is complicated, in general, but simplifies consider-(p , p , v , v ).H L H L

ably when with and held constant. Taking limits andm r � h p m /m b p n/mH

inserting after some algebraic manipulations,d d d d(p , p , v , v ) p (p , p , v , v ),H L H L H L H L

we can reduce (A7) and (A11) to
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p �bz � 2({[exp (bz) � 1]/bz} � 1)H
p (A12)

1 � p 1 � bzH

and

p 1 � h b(1 � hz)L
p exp � 1 , (A13){ [ ] }1 � p b(1 � hz) 1 � hL

where Also, we can simplify (A2) toz p lim mv .mr� H

1 � p (1 � h)z 2[1 �exp (�bz)] � bzexp (�bz)H
p . (A14)

1 � p 1 � hz 1 �exp (�{[b(1 � hz)]/(1 � h)})L

These can be combined to yield one equation in z. Then, on solving for z, one
can solve for pH and pL. At this stage, it is a matter of routine algebra to verify
that the answer is the same as the solution for the model in the text when

with h and b held constant.m r �
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