EC9A2 Problem Set 1

1 Finite Horizon Consumption-Savings

Consider a consumer who lives for T=3 periods with initial wealth $W_0=100$ and no income. The consumer has CRRA utility $u(c)=\frac{c^{1-\theta}}{1-\theta}$ with $\theta=2$, discount factor $\beta=0.9$, and faces interest rate r=0.05.

- (a) Using the Lagrangian method, derive the present value budget constraint and set up the optimization problem.
- (b) Derive the Euler equation and solve for the consumption growth rate $\frac{c_{t+1}}{c_t}$.
- (c) Calculate the consumption level in each period (c_0, c_1, c_2) and verify that the budget constraint is satisfied.

2 Infinite Horizon Analysis

Consider an infinite horizon consumption-savings problem with the following setup:

$$\max \sum_{t=0}^{\infty} \beta^t \ln(c_t)$$

subject to:

$$a_{t+1} = (1+r)a_t + y - c_t$$

$$c_t \ge 0$$

$$a_t \ge 0$$

$$\lim_{t \to \infty} \beta^t u'(c_t)a_t = 0$$

- (a) Explain the economic meaning of each constraint.
- (b) Write down the Bellman equation and derive the first-order condition, envelope condition, and Euler equation.
- (c) Suppose $\beta(1+r)=1$. Show that the transversality condition becomes $\lim_{t\to\infty} a_t=0$. What does this imply about the agent's asset holding behavior in the long run?
- (d) Now suppose $\beta(1+r) > 1$. Analyze what happens to the consumption path over time. Is this economically reasonable? Explain why the transversality condition is necessary to rule out explosive behavior.

3 MATLAB Implementation

Implement value function iteration to solve the infinite horizon consumption-savings problem numerically using the following parameters:

- Utility: $u(c) = \ln(c)$
- $\beta = 0.9, r = 0.05, y = 1$
- Asset grid: 500 points from $a_{min} = 0$ to $a_{max} = 50$
- Convergence tolerance: 10^{-6}
- (a) Write MATLAB code that implements the value function iteration algorithm. Your code should:
 - Set up the asset grid and initial value function guess
 - Implement the Bellman operator
 - Iterate until convergence
 - Store both the value function and policy functions
- (b) Create plots showing:
 - The converged value function V(a)
 - The optimal policy functions $g_c(a)$ and $g_a(a)$