SIS

- W

MATLAB Fundamentals for Macroeconomic Modeling

1 Introduction

This document introduces the essential MATLAB concepts needed to implement dynamic pro-
gramming solutions for macroeconomic models, with a focus on practical skills required for value
function iteration, policy function computation, and simulation of economic models.

The matlab file “matlab_intro.m” contains all the code in this document. You should open this
file and run each piece of code as you read through this document. This will help you lean the
syntax and get you familiar with MATLAB.

2 Variables and Basic Operations

2.1 Variable Assignment

MATLARB uses simple assignment with the = operator. Unlike some languages, you don’t need to
declare variable types.

clear;

% Parameters

beta = 0.96; % Discount factor

sigma = 2; % Risk aversion

N = 200; % Number of grid points
Key points:

e clear removes all variables stored in workspace

e Use % for comments

Variables are created on first assignment

Semicolons suppress output; omit them to see results

Variable names are case-sensitive




3 Arrays and Vectors

3.1 Creating Vectors

Vectors are the fundamental data structure in MATLAB.

% Column vector of zeros
V = zeros (100, 1);

% Row vector (note the commas)
prices = [1.5, 2.3, 4.7];

% Column vector (note the semicolons)
quantities = [10; 20; 30];

%» Transpose operator
row_to_col = prices’; Y Now a column vector

3.2 Creating Grids

The 1inspace function creates evenly spaced points, crucial for discretizing state spaces.

% Create a grid from O to 10 with 100 points
k_grid = linspace (0, 10, 100);

% Alternatively, using colon operator
x = 0:0.1:10; % From O to 10 in steps of 0.1

3.3 Array Indexing

% Create a vector
v = [10, 20, 30, 40, 50];

% Access single element (MATLAB uses l-based indexing)
first = v(1); % Returmns 10
third = v(3); % Returmns 30

% Access multiple elements
subset = v(2:4); % Returmns [20, 30, 40]

% Access from beginning to specific index
start = v(1:3); % Returns [10, 20, 30]

% Access from specific index to end
finish = v(3:end); % Returns [30, 40, 50]

% Last element
last = v(end); % Returms 50




4 Element-wise vs Matrix Operations

This is one of the most important concepts in MATLAB.

4.1 Matrix Operations (Linear Algebra)

Standard operators perform linear algebra operations:

A= [1, 2; 3, 4];
B =[5, 6; 7, 81;

Q
|

B; % Matrix multiplication

= A x
= A"2; % Matrix power (A * A)

4.2 Element-wise Operations

For element-by-element operations, use the dot operator:

% Element-wise multiplication

x = [1, 2, 3];

[4, 5, 6];

zZ = X .* y; % Returns [4, 10, 18]

<
Il

% Element-wise division
w==x ./9; % Returns [0.25, 0.4, 0.5]

% Element-wise power
p=x .7 2; % Returmns [1, 4, 9]

4.3 When to Use Each

% Production function: y = k~alpha
k_grid = linspace(1, 10, 100)’;
alpha = 0.33;

% CORRECT: Element-wise power
y = k_grid .~ alpha; 7 Applies to each element

% WRONG: Matrix power
% y = k_grid ~ alpha; % This will cause an error.

% CRRA utility: u(c) = c“(l-sigma) / (l1-sigma)
¢ = linspace (0.1, 5, 100) ’;

sigma = 2;
% CORRECT:
u= (c .~ (1-sigma)) / (l-sigma);

Rule of thumb: When working with vectors representing economic variables (grids, consump-
tion paths, etc.), almost always use element-wise operations.




5 The max() Function

The max() function is central to value function iteration. There are two ways to use the max()
function.

5.1 Finding the maximum of a vector

When using the max () function to find the maximum in a vector the function can return two values.

values = [2.3, 5.1, 3.7, 6.2, 1.8];

% Get only the maximum value
max_val = max(values); % Returns 6.2

% Get both value and location
[max_val, max_idx] = max(values); % max_val = 6.2, max_idx = 4

5.2 Finding the maximum between each element and a number

values = [-1, 3, 5, -2, 4];

% Ensure non-negative values
non_negatives = max(values, 0); % Returns [0, 3, 5, 0, 4];

6 Essential Built-in Functions

6.1 Mathematical Functions

% Common functions

x = -2.5;

abs_x = abs(x); % Absolute value: 2.5
sqrt_x = sqrt(4); % Square root: 2
log_x = log(10); % Natural log: 2.3026
exp_x = exp(1); % Exponential: 2.7183

6.2 Statistical Functions

data = [1.2, 3.4, 2.1, 5.6, 4.3];

mean_val = mean(data); % Average
std_val = std(data) ; % Standard deviation
max_val = max(data) ; % Maximum
min_val = min(data); % Minimum

% Correlation

x = [1, 2, 3, 4, 5];
y = [2, 4, 5, 4, 5];
correlation = corr(x’, y’); % Must be column vectors.




6.3 The find() Function

Locates indices where a condition is true:

x=1[1, 2, 2, 2, 3, 4, 5];

% Find first occurrence
idx1l = find(x == 0, 2, "first"); % Returns idx

]
N

% Find all occurrence
idx2 = find(x == 0, 2); % Returns idx = [2, 3, 4]

% Find all elements greater than 3
large_idx = find(x > 3); % Returns large_idx = [6, 7]

7 Anonymous Functions

Anonymous functions create function handles without separate files.

7.1 Basic Syntax

% Syntax: function_name = @(inputs) expression
f = 0(x) x72; % Function that squares input
g = 0(x, y) x + 2xy; % Function with two inputs

7.2 Economic Applications

% CRRA utility function
u = 0(c) (c."(1-sigma)) / (l-sigma);

% Cobb-Douglas production
f = @(k) k. alpha;

% Complete production function
F = @(k, h) k. alpha .* h. (l1-alpha);

% Using the functions
consumption = 2.5;
utility_value = u(consumption);

capital = linspace(l, 10, 50)’;
output = f(capital); J Vectorized

Key point: Use element-wise operators inside anonymous functions when you plan to pass
vectors.




V)

8 Vectorization and Broadcasting

8.1 Broadcasting

MATLAB automatically expands scalars and vectors in arithmetic operations:

% Scalar + vector

a = 5;

v = [1, 2, 3];

result = a + v; % Returns [6, 7, 8]

8.2 Vectorized Operations

% Instead of loop:

for i = 1l:length(k_grid)
y(i) = k_grid (i) “alpha;

end

% Use vectorization:
y = k_grid .~ alpha; 7% Much faster

% Multiple operations

k = linspace(l, 10, 100);
alpha = 0.33;

delta = 0.1;

% All vectorized

output = k .~ alpha;

depreciation = delta * k;
net_output = output - depreciation;

9 Control Flow

9.1 For Loops

% Basic syntax
for i = 1:10

disp(i); % Display the value
end

% Loop over array indices: Returns New [2, 3, ..., 11]

N = length(k_grid);

New = zeros(1,N);
for i = 1:N

New (i) = i+1;
end




9.2 While Loops

Used for iterating until convergence:

% Value function iteration pattern
iter = 0;
tol = 1le-6;
diff = 7;
while diff > tol
iter = iter + 1 7
every iteration

without a semicolon, the

% update difference
diff = diff - sqrt(iter);
end

value of iter displays for

9.3 If-Else Statements

% Basic if statement

X = 2;

if x > 0
disp("Positive");

end

% If-else

y = 3

if x >= y
positive

else
positive

end

]
"
|

]
<
|

10 Random Number Generation

10.1 Setting the Seed

For reproducible results:

rng (123); % Set seed to 123
% Now random numbers will be the same each time

10.2 Generating Random Numbers

% Uniform random number in [0,1]
u = rand();

% Vector of random numbers
u_vec = rand (100, 1);




16

11 Plotting

11.1 Basic Plotting

% Simple line plot

x = linspace (0, 10, 100);

y = x.72;

plot(x, y);

xlabel ("x"

ylabel ("y");

title ("Quadratic Function");

% Multiple series

y2 = x.72 + 25

plot(x, yi1, x, y2);

legend ("Series 1", "Series 2");

% Formatting
plot(x, y, "LineWidth", 2); % Thicker 1line
plot(x, y, "r--"); % Red dashed line

% Overlaying plots
plot(x, y1);

hold on;

plot(x, y2);

hold off;

12 Interpolation

We will have a function defined on a grid, that is, x values and corresponding y values, stored in
vectors. Sometimes we will want to evaluate the function at an x-value that is not part of the x-grid
(i.e. the values in the x vector). To do this we need to interpolate the function. This function fits
a linear function between each pair of (x,y) values to evaluate off gird points.

% A function defined on grid
x_grid = [1, 2, 3, 4, 5, 6, 7];
y = x_grid. 2;

% x value not on grid
x_value = 3.4;

% Interpolate
y_value = interpl(x_grid, y, x_value);

In this example, we know the functional for, i.e. y = 22, and so we could find y_value =

x_value?. However, in our application we will not know the function form, we will only have the
x-grid vector and the corresponding y values, so we will need to interpolate.




13 Common Mistakes and Debugging

13.1 Common Errors

1. Dimension mismatch

1 |{% ERROR: Row vector + column vector

2|x = linspace(0, 10, 100); % Row vector
3|y = zeros (100, 1); % Column vector
4lz = x + y; % Error

6% FIX: Make dimensions match
7|x = linspace (0, 10, 100)’; % Now column
s|lz = x + y; % Works

2. Forgetting element-wise operators

1| % ERROR

2|k = linspace(l, 10, 100) ’;

3|y = k70.33; ), Matrix power doesn’t make sense here
!

5% FIX

6|ly = k.70.33; % Element-wise power

3. Using 0-based indexing

1 |% ERROR (MATLAB is 1-indexed)

2| first = array(0); % Error

3

. | % CORRECT

5| first = array(l); 7 First element




	Introduction
	Variables and Basic Operations
	Variable Assignment

	Arrays and Vectors
	Creating Vectors
	Creating Grids
	Array Indexing

	Element-wise vs Matrix Operations
	Matrix Operations (Linear Algebra)
	Element-wise Operations
	When to Use Each

	The max() Function
	Finding the maximum of a vector
	Finding the maximum between each element and a number

	Essential Built-in Functions
	Mathematical Functions
	Statistical Functions
	The find() Function

	Anonymous Functions
	Basic Syntax
	Economic Applications

	Vectorization and Broadcasting
	Broadcasting
	Vectorized Operations

	Control Flow
	For Loops
	While Loops
	If-Else Statements

	Random Number Generation
	Setting the Seed
	Generating Random Numbers

	Plotting
	Basic Plotting

	Interpolation
	Common Mistakes and Debugging
	Common Errors


